

Using Functions
Version 7.2

DN1001140.1101

FOCUS for S/390

Cactus, EDA/SQL, FIDEL, FOCCALC, FOCUS, FOCUS Fusion, FOCUS Vision, Hospital-Trac, Information Builders, the Information
Builders logo, Parlay, PC/FOCUS, SmartMart, SmartMode, SNAPpack, TableTalk, WALDO, Web390, WebFOCUS and WorldMART are
registered trademarks and EDA, iWay, and iWay Software are trademarks of Information Builders, Inc.
Acrobat and Adobe are registered trademarks of Adobe Systems Incorporated.
Allaire and JRun are trademarks of Allaire Corporation.
NOMAD is a registered trademark of Aonix.
UniVerse is a registered trademark of Ardent Software, Inc.
IRMA is a trademark of Attachmate Corporation.
Baan is a registered trademark of Baan Company N.V.
SUPRA and TOTAL are registered trademarks of Cincom Systems, Inc.
Impromptu is a registered trademark of Cognos.
Alpha, DEC, DECnet, NonStop, and VAX are registered trademarks and Tru64, OpenVMS, and VMS are trademarks of Compaq Computer
Corporation.
CA-ACF2, CA-Datacom, CA-IDMS, CA-Top Secret, & Ingres are registered trademarks of Computer Associates International, Inc.
MODEL 204 and M204 are registered trademarks of Computer Corporation of America.
Paradox is a registered trademark of Corel Corporation.
StorHouse is a registered trademark of FileTek, Inc.
HP MPE/iX is a registered trademark of Hewlett Packard Corporation.
Informix is a registered trademark of Informix Software, Inc.
ACF/VTAM, AIX, AS/400, CICS, DB2, DRDA, Distributed Relational Database Architecture, IBM, MQSeries, MVS/ESA, OS/2, OS/390,
OS/400, RACF, RS/6000, S/390, VM/ESA, VSE/ESA and VTAM are registered trademarks and DB2/2, Hiperspace, IMS, MVS, QMF,
SQL/DS, WebSphere, z/OS and z/VM are trademarks of International Business Machines Corporation.
INTERSOLVE and Q+E are registered trademarks of INTERSOLVE.
Orbix is a registered trademark of Iona Technologies Inc.
Approach and DataLens are registered trademarks of Lotus Development Corporation.
ObjectView is a trademark of Matesys Corporation.
ActiveX, FrontPage, Microsoft, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual FoxPro, Windows, and Windows NT are
registered trademarks of Microsoft Corporation.
Teradata is a registered trademark of NCR International, Inc.
Netscape, Netscape FastTrack Server, and Netscape Navigator are registered trademarks of Netscape Communications Corporation.
CORBA is a trademark of Object Management Group, Inc.
Oracle is a registered trademark and Rdb is a trademark of Oracle Corporation.
PeopleSoft is a registered trademark of PeopleSoft, Inc.
INFOAccess is a trademark of Pioneer Systems, Inc.
Progress is a registered trademark of Progress Software Corporation.
Red Brick Warehouse is a trademark of Red Brick Systems.
SAP and SAP R/3 are registered trademarks and SAP Business Information Warehouse and SAP BW are trademarks of SAP AG.
Silverstream is a trademark of Silverstream Software.
ADABAS is a registered trademark of Software A.G.
CONNECT:Direct is a trademark of Sterling Commerce.
Java and all Java-based marks, NetDynamics, Solaris, SunOS, and iPlanet are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.
PowerBuilder and Sybase are registered trademarks and SQL Server is a trademark of Sybase, Inc.
Unicode is a trademark of Unicode, Inc.
UNIX is a registered trademark of The Open Group in the United States and other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. In most, if not all
cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher’s intent to
use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any of these
names other than to refer to the product described.
Copyright © 2001 by Information Builders, Inc. All rights reserved. This manual, or parts thereof, may not be reproduced in any form
without the written permission of Information Builders, Inc.

Printed in the U.S.A.

Using Functions

Preface
This documentation describes how to use functions to perform certain calculations and
manipulations. It is intended for application developers. This manual is part of the
FOCUS for S/390 documentation set.

The documentation set consists of the following components:

• The Creating Reports manual describes FOCUS Reporting environments and
features.

• The Describing Data manual explains how to create the metadata for the data
sources that your FOCUS procedures will access.

• The Developing Applications manual describes FOCUS application development
tools and environments.

• The Maintaining Databases manual describes FOCUS data management facilities
and environments.

• The Using Functions manual describes internal functions and user-written
subroutines.

• The Overview and Operating Environments manual contains an introduction to
FOCUS and FOCUS tools and describes how to use FOCUS in the VM/CMS and
MVS (OS/390) environments.

The users’ documentation for FOCUS Version 7.2 is organized to provide you with a
useful, comprehensive guide to FOCUS.

Chapters need not be read in the order in which they appear. Though FOCUS facilities
and concepts are related, each chapter fully covers its respective topic. To enhance your
understanding of a given topic, references to related topics throughout the documentation
set are provided. The following pages detail documentation organization and
conventions.

Preface

 Information Builders

How This Manual Is Organized
This manual is organized as follows:

Chapter/Appendix Contents

1 Introducing Functions Offers an introduction to functions and explains the
different types of functions available.

2 Accessing and Invoking
a Function

Describes the considerations for supplying
arguments in a function, explains how to use a
function in a command, and how to access
externally-stored functions.

3 Character Functions Describes the available character functions, which
enable you to manipulate alphanumeric fields and
character strings

4 Data Source and
Decoding Functions

Describes the available data source functions, which
enable you to search for or retrieve data source
records or values.

5 Date and Time
Functions

Describes the available date and time functions,
which enable you to manipulate date and time
values.

6 Format Conversion
Functions

Describes the available format conversion functions,
which convert fields from one format to another.

7 Numeric Functions Describes the available numeric functions, which
enable you to perform calculations on numeric
constants and fields.

8 System Functions Describes the available system functions, which
enable you to make calls to the operating system to
obtain information about the operating environment
or to use a system service

A Creating Your Own
Subroutines

Describes how to create and store site-specific
functions.

 Summary of New Features

Using Functions

Summary of New Features
The new FOCUS features and enhancements described in this documentation set are
listed in the following table.

New Feature Manual Chapter

Field-based Reformatting Creating Reports Chapter 1, Creating Tabular
Reports

Increased Report Width Creating Reports Chapter 1, Creating Tabular
Reports

ACROSS-TOTAL Creating Reports Chapter 4, Sorting Tabular
Reports

Tiles Creating Reports Chapter 4, Sorting Tabular
Reports

DEFINE FILE SAVE and
DEFINE FILE RETURN

Creating Reports Chapter 6, Creating
Temporary Fields

Forecast Creating Reports Chapter 6, Creating
Temporary Fields

Creating Comma-Delimited
Files

Creating Reports Chapter 11, Saving and
Reusing Report Output

Creating Tab-Delimited
Files

Creating Reports Chapter 11, Saving and
Reusing Report Output

Long Master File Names Creating Reports Chapter 11, Saving and
Reusing Report Output

JOIN WHERE Creating Reports Chapter 13, Joining Data
Sources

KEEPDEFINES Creating Reports Chapter 13, Joining Data
Sources

Long Master File Names Describing Data Chapter 1, Understanding a
Data Source Description

4K Alpha Fields Describing Data Chapter 4, Describing an
Individual Field

Extended Currency Symbol
Support

Describing Data Chapter 4, Describing an
Individual Field

SUFFIX =
COMT/COMMA/TABT

Describing Data Chapter 5, Describing a
Sequential, VSAM, or ISAM
Data Source

Preface

 Information Builders

New Feature Manual Chapter

AUTODATE Describing Data Chapter 6, Describing a
FOCUS Data Source

CDN parameter Developing
Applications

Chapter 1, Customizing Your
Environment

CENT-ZERO parameter Developing
Applications

Chapter 1, Customizing Your
Environment

ERROROUT parameter Developing
Applications

Chapter 1, Customizing Your
Environment

KEEPDEFINES parameter Developing
Applications

Chapter 1, Customizing Your
Environment

PCOMMA parameter Developing
Applications

Chapter 1, Customizing Your
Environment

Unlimited nested
-INCLUDE commands

Developing
Applications

Chapter 2, Managing an
Application With Dialogue
Manager

SQUEEZ function Using Functions Chapter 3, Character
Functions

STRIP function Using Functions Chapter 3, Character
Functions

TRIM function Using Functions Chapter 3, Character
Functions

DYNAM ALLOC
LONGNAME

Overview and
Operating
Environments

Chapter 5, OS/390 and MVS
Guide to Operations

 Documentation Conventions

Using Functions

Documentation Conventions
The following conventions apply throughout this manual:

Convention Description

THIS TYPEFACE Denotes a command that you must enter in uppercase, exactly
as shown.

this typeface Denotes a value that you must supply.

{ } Indicates two choices from which you must choose one. You
type one of these choices, not the braces.

| Separates two mutually exclusive choices in a syntax line.
Type one of these choices, not the symbol.

[] Indicates optional parameters. None of them is required, but
you may select one of them. Type only the information within
the brackets, not the brackets.

underscore Indicates the default value.

... Indicates that you can enter a parameter multiple times. Type
only the information, not the ellipsis points.

.

.

.

Indicates that there are (or could be) intervening or additional
commands.

Related Publications
See the Information Builders Publications Catalog for the most up-to-date listing and
prices of technical publications, plus ordering information. To obtain a catalog, contact
the Publications Order Department at (800) 969-4636.

You can also visit our World Wide Web site, http://www.informationbuilders.com, to
view a current listing of our publications and to place an order.

Customer Support
Do you have questions about FOCUS?

Call Information Builders Customer Support Services (CSS) at (800) 736-6130 or
(212) 736-6130. Customer Support Consultants are available Monday through Friday
between 8:00 a.m. and 8:00 p.m. EST to address all your FOCUS questions. Information
Builders consultants can also give you general guidance regarding product capabilities
and documentation. Please be ready to provide your six-digit site code number (xxxx.xx)
when you call.

Preface

 Information Builders

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site,
http://www.informationbuilders.com. It connects you to the tracking system and
known-problem database at the Information Builders support center. Registered users can
open, update, and view the status of cases in the tracking system, and read descriptions of
reported software issues. New users can register immediately for this service. The
technical support section of www.informationbuilders.com also provides usage
techniques, diagnostic tips, and answers to frequently asked questions.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Information You Should Have
To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

• Your six-digit site code number (xxxx.xx).

• The FOCEXEC procedure (preferably with line numbers).

• Master File with picture (provided by CHECK FILE).

• Run sheet (beginning at login, including call to FOCUS), containing the following
information:

• ? RELEASE

• ? FDT

• ? LET

• ? LOAD

• ? COMBINE

• ? JOIN

• ? DEFINE

• ? STAT

• ? SET

• ? SET GRAPH

• ? USE

• For MVS, ? TSO DDNAME

• For VM, CMS QFI

 User Feedback

Using Functions

• The exact nature of the problem:

• Are the results or the format incorrect; are the text or calculations missing or
misplaced?

• The error message and code, if applicable.

• Is this related to any other problem?

• Has the procedure or query ever worked in its present form? Has it been changed
recently? How often does the problem occur?

• What release of the operating system are you using? Has it, FOCUS, your security
system, or an interface system changed?

• Is this problem reproducible? If so, how?

• Have you tried to reproduce your problem in the simplest form possible? For
example, if you are having problems joining two databases, have you tried executing
a query containing just the code to access the database?

• Do you have a trace file?

• How is the problem affecting your business? Is it halting development or
production? Do you just have questions about functionality or documentation?

User Feedback
In an effort to produce effective documentation, the Documentation Services staff at
Information Builders welcomes any opinion you can offer regarding this manual. Please
use the Reader Comments form at the end of this manual to relay suggestions for
improving the publication or to alert us to corrections. You can also use the Document
Enhancement Request Form on our Web site, http://www.informationbuilders.com.

Thank you, in advance, for your comments.

Information Builders Consulting and Training
Interested in training? Information Builders Education Department offers a wide variety
of training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes,
visit our World Wide Web site (http://www.informationbuilders.com) or call (800)
969-INFO to speak to an Education Representative.

Using Functions

Contents
1 Introducing Functions..1-1

Using Functions..1-2
Types of Functions ...1-3

Character Functions...1-3
Data Source and Decoding Functions ...1-6
Date and Time Functions ..1-7
Format Conversion Functions ...1-12
Numeric Functions ..1-13
System Functions ..1-15

2 Accessing and Invoking a Function...2-1
Invoking a Function..2-2
Using an Argument in a Function...2-3

Argument Types..2-3
Argument Formats...2-4
Argument Length ..2-4
Number and Order of Arguments..2-5

Using a Function in a FOCUS Command ..2-5
Using a Calculation or Compound IF Command With a COMPUTE Command...................................2-6

Using a Function With a Dialogue Manager Command...2-6
Assigning the Result of a Function to a Variable ..2-7
Using a Function in a -IF Command ...2-8
Using a Function in an Operating System -RUN Command...2-9

Using a Function in Another Function ...2-11
Using a Function in WHERE or IF Criteria ...2-11
Using a Function in WHEN Criteria ..2-12
Using a Function in a RECAP Command ..2-13
Accessing a Function..2-14

Storing and Accessing a Function on OS/390 ...2-14
Storing and Accessing a Function on UNIX ...2-16
Storing and Accessing a Function on VM/CMS ...2-16
Searching for a Function Library ..2-17
Adding and Deleting a Subroutine Library ...2-19

Dynamic Language Environment Support ...2-20

Contents

 Information Builders

3 Character Functions...3-1
ARGLEN: Measuring the Length of a String...3-2
ASIS: Distinguishing Between a Space and a Zero..3-3
BITSON: Determining if a Bit is On or Off ...3-4
BITVAL: Evaluating a Bit String a Binary Integer..3-5
BYTVAL: Translating a Character to a Decimal Value...3-7
CHKFMT: Checking the Format of a String..3-8
CTRAN: Translating One Character to Another ..3-11
CTRFLD: Centering a Character String ...3-17
EDIT: Extracting or Adding Characters ...3-19
GETTOK: Extracting a Substring (Token)...3-20
LCWORD: Converting a String to Mixed Case ...3-22
LJUST: Left-Justifying a String ...3-24
LOCASE: Converting Text to Lowercase..3-25
OVRLAY: Overlaying a Substring Within a String...3-27
PARAG: Dividing Text Into Smaller Lines ...3-29
POSIT: Finding the Beginning of a Substring..3-31
RJUST: Right-Justifying a String...3-32
SOUNDEX: Comparing Strings Phonetically..3-33
SQUEEZ: Reducing Multiple Blanks to a Single Blank ..3-35
STRIP: Removing a Character From a String ..3-36
SUBSTR: Extracting a Substring ...3-37
TRIM: Removing Leading and Trailing Occurrences..3-39
UPCASE: Converting Text to Uppercase...3-41

4 Data Source and Decoding Functions ...4-1
DECODE: Decoding Values ..4-2
FIND: Verifying the Existence of an Indexed Field...4-5
LAST: Retrieving the Preceding Value..4-7
LOOKUP: Retrieving a Value From a Cross-Referenced File...4-9

Using the Extended LOOKUP Function ...4-15

 Contents

Using Functions

5 Date and Time Functions ...5-1
Using Standard Date and Time Functions ..5-2

Specifying Work Days ..5-3
Enabling Leading Zeros For Date and Time Functions in Dialogue Manager..5-5
DATEADD: Adding or Subtracting a Date Unit to or From a Date ...5-6
DATECVT: Converting a Date Format ..5-9
DATEDIF: Finding the Difference Between Two Dates ..5-11
DATEMOV: Moving a Date to a Significant Point ..5-14
HADD: Incrementing a Date-Time Field..5-16
HCNVRT: Converting a Date-Time Field to Alphanumeric Format ..5-17
HDATE: Converting the Date Portion of a Date-Time Field to a Date Format5-18
HDIFF: Finding the Number of Units Between Two Date-Time Values..5-19
HDTTM: Converting a Date field to a Date-Time Field ...5-20
HGETC: Storing the Current Date and Time in a Date-Time Field ..5-21
HHMMSS: Returning the Current Time ...5-22
HINPUT: Converting an Alphanumeric String to a Date-Time Value..5-23
HMIDNT: Setting the Time Portion of a Date-Time Field to Midnight ...5-24
HNAME: Extracting a Date-Time Component in Alphanumeric Format...5-25
HPART: Returning a Date-Time Component in Numeric Format..5-27
HSETPT: Inserting a Component Into a Date-Time Field ..5-28
HTIME: Converting the Time Portion of a Date-Time Field to a Number ...5-29
TODAY: Returning the Current Date ...5-30

Using Legacy Date Functions...5-32
Using Legacy Versions of Date Functions ..5-33
Using Dates With Two and Four-Digit Years ...5-33
AYM: Adding or Subtracting Months to or From Dates...5-34
AYMD: Adding or Subtracting Days to or From Dates..5-36
CHGDAT: Changing Date Formats ..5-37
DA Functions: Converting a Date to an Integer ..5-39
DMY, MDY, YMD: Calculating the Difference Between Two Dates..5-41
DOWK and DOWKL: Finding the Day of the Week..5-42
DT Functions: Converting an Integer to a Date ..5-43
GREGDT: Converting From Julian to Gregorian Format...5-45
JULDAT: Converting a Date From Gregorian to Julian Format...5-46
YM: Calculating Elapsed Months ...5-47

Contents

 Information Builders

6 Format Conversion Functions...6-1
ATODBL: Converting an Alphanumeric String to Double-Precision Format ...6-2
EDIT: Converting the Format of a Field ..6-6
FTOA: Converting a Number to Alphanumeric Format...6-8
HEXBYT: Converting a Number to a Character..6-9
ITONUM: Converting a Large Binary Integer to Double-Precision Format..6-12
ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format..6-13
ITOZ: Converting a Number to Zoned Format ..6-15
PCKOUT: Writing Packed Numbers of Different Lengths..6-17
UFMT: Converting Alphanumeric to Hexadecimal ...6-19

7 Numeric Functions ...7-1
ABS: Calculating Absolute Value..7-2
ASIS: Distinguishing Between a Blank and a Zero..7-3
BAR: Producing Bar Charts ...7-3
CHKPCK: Validating Packed Fields..7-6
DMOD, FMOD, and IMOD: Calculating the Remainder From a Division ...7-8
EXP: Raising “e” to the Nth Power..7-10
EXPN: Evaluating a Number in Scientific Notation ..7-11
INT: Finding the Greatest Integer ..7-12
LOG: Calculating the Natural Logarithm...7-13
MAX and MIN: Finding the Maximum or Minimum Value..7-14
PRDNOR and PRDUNI: Generating Reproducible Random Numbers ...7-15
RDNORM and RDUNIF: Generating Random Numbers ..7-18
SQRT: Calculating the Square Root...7-20

8 System Functions ..8-1
FEXERR: Retrieving an Error Message...8-2
FINDMEM: Finding a Member of a Partitioned Data Set ...8-3
GETPDS: Determining if a Member of a Partitioned Data Set Exists ...8-5
GETUSER: Retrieving a User ID...8-9
HHMMSS: Returning the Current Time ..8-10
MVSDYNAM: Passing a DYNAM Command to the Command Processor..8-11
TODAY: Returning the Current Date...8-13

 Contents

Using Functions

A Creating Your Own Subroutines ...A-1
Process Overview ..A-2
Considerations for Writing Subroutines ..A-3

Naming Conventions..A-3
Argument Considerations...A-4
Programming Considerations ...A-5
Language Considerations ...A-6
Programming Technique: Entry Points ..A-8
Programming Technique: Subroutines With More Than 28 Arguments..A-9

Compilation and Storage ...A-13
VM/CMS: Compilation and Storage ..A-13
OS/390: Compilation and Storage..A-14

Testing the Subroutine...A-14
Example of a Custom Subroutine: The MTHNAM Subroutine ..A-15

The MTHNAM Subroutine Written in FORTRAN ...A-16
The MTHNAM Subroutine Written in COBOL ..A-17
The MTHNAM Subroutine Written in PL/I...A-19
The MTHNAM Subroutine Written in BAL Assembler ..A-20
The MTHNAM Subroutine Written in C ...A-21
The MTHNAM Subroutine Called by a FOCUS Request ...A-22

Subroutines Written in REXX...A-23
Using REXX Subroutines ..A-23
Compiling FUSREXX Macros in VM/CMS..A-34

Index ... I-1

Using Functions 1-1

CHAPTER 1

Introducing Functions

Topics:
• Using Functions

• Types of Functions

This topic offers an introduction to functions and explains the
different types of functions available.

Introducing Functions

1-2 Information Builders

Using Functions
Functions operate on one or more arguments and return a single value or character string.
The return value or string can be stored in a field, assigned to a Dialogue Manager
variable, used in a calculation or other processing, or used in a selection or validation test.
Functions provide a convenient way to perform certain calculations and manipulations.

There are two types of functions:

• Internal functions are built into FOCUS and require no extra work to access or use.
The following are internal functions. All other functions are external.

• ABS function

• ASIS function

• DMY, MDY, and YMD function

• DECODE function

• EDIT function

• FIND function

• LAST function

• LOG function

• LOOKUP function

• MAX and MIN function

• SQRT function

• External functions are stored in an external library that must be accessed. When you
invoke these functions, an extra argument specifying the output field or format of the
result is required.

For information on how to use an internal or external function, see Chapter 2, Accessing
and Invoking a Function.

 Types of Functions

Using Functions 1-3

Types of Functions
You can access any of the following kinds of functions:

• Character functions manipulate alphanumeric fields or character strings. For details,
see Character Functions on page 1-3.

• Data Source and Decoding functions search for or retrieve data source records or
values, and assign values. For details, see Data Source and Decoding Functions on
page 1-6.

• Date and Time functions manipulate dates and times. For details see Date and Time
Functions on page 1-7.

• Format Conversion functions convert fields from one format to another. For details,
see Format Conversion Functions on page 1-12.

• Numeric functions perform calculations on numeric constants and fields. For details,
see Numeric Functions on page 1-13.

• System functions call the operating system to obtain information about the operating
environment or to use a system service. For details see System Functions on page
1-15.

Character Functions
The following functions manipulate alphanumeric fields or character strings. For details
see Chapter 3, Character Functions.

ARGLEN function
Measures the length of a character string within a field, excluding trailing blanks.

Available Operating Systems: All

Available Languages: reporting, Maintain

ASIS function
In Dialogue Manager, distinguishes between a blank and a zero.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, Windows
NT/2000

Available Languages: reporting

BITSON function
Evaluates an individual bit within a character string to determine whether it is on or
off.

Available Operating Systems: All

Available Languages: reporting, Maintain

BITVAL function
Evaluates a string of bits within a character string and returns its binary value.

Available Operating Systems: All

Available Languages: reporting, Maintain

Introducing Functions

1-4 Information Builders

BYTVAL function
Translates a character to its corresponding ASCII or EBCDIC decimal value.

Available Operating Systems: All

Available Languages: reporting, Maintain

CHKFMT function
Checks for incorrect character types by comparing each character in the input string
to the corresponding character in a mask.

Available Operating Systems: All

Available Languages: reporting, Maintain

CTRAN function
Converts one character in a string to another character.

Available Operating Systems: All

Available Languages: reporting, Maintain

CTRFLD function
Centers a character string within a field, excluding trailing blanks.

Available Operating Systems: All

Available Languages: reporting, Maintain

EDIT function
Extracts characters from or adds characters to an alphanumeric string (with mask).

Available Operating Systems: All

Available Languages: reporting

GETTOK function
Divides a character string at a delimiter and returns a substring called a token.

Available Operating Systems: All

Available Languages: reporting, Maintain

LCWORD function
Converts the letters in a given string to mixed case.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

LJUST function
Left-justifies a character string within a field. All leading blanks become trailing
blanks.

Available Operating Systems: All

Available Languages: reporting, Maintain

 Types of Functions

Using Functions 1-5

LOCASE function
Converts alphanumeric text to lowercase.

Available Operating Systems: All

Available Languages: reporting, Maintain

OVRLAY function
Overlays a base character string with a substring.

Available Operating Systems: All

Available Languages: reporting, Maintain

PARAG function
Divides lines of text into smaller lines with delimiters.

Available Operating Systems: All

Available Languages: reporting, Maintain

POSIT function
Finds the starting position of a substring within a larger string.

Available Operating Systems: All

Available Languages: reporting, Maintain

Available Languages: reporting, Maintain

RJUST function
Right-justifies a character string within a field. All trailing blanks become leading
blanks.

Available Operating Systems: All

Available Languages: reporting, Maintain

SOUNDEX function
Searches for a character string phonetically rather than by its spelling.

Available Operating Systems: All

Available Languages: reporting, Maintain

SQUEEZ function
Reduces multiple contiguous blank characters within a string to a single blank
character.

Available Operating Systems: All

Available Languages: reporting, Maintain

STRIP function
Removes all occurrences of a specific character from a string.

Available Operating Systems: All

Available Languages: reporting, Maintain

Introducing Functions

1-6 Information Builders

SUBSTR function
Extracts a substring based on where it starts and ends in the parent string.

Available Operating Systems: All

Available Languages: reporting, Maintain

TRIM function
Removes leading and/or trailing occurrences of a pattern within a string.

Available Operating Systems: All

Available Languages: reporting, Maintain

UPCASE function
Converts alphanumeric text to uppercase.

Available Operating Systems: All

Available Languages: reporting, Maintain

Data Source and Decoding Functions
The following functions search for data source records, retrieve data source records or
values, and assign values. For details, see Chapter 4, Data Source and Decoding
Functions.

DECODE function
Assigns values based on the value of an input field.

Available Operating Systems: All

Available Languages: reporting, Maintain

FIND function
Verifies if a value exists in an indexed field in another file.

Available Operating Systems: All

Available Languages: reporting

LAST function
Retrieves the preceding value selected for a field.

Available Operating Systems: All

Available Languages: reporting

LOOKUP function
Retrieves a value from a cross-referenced file.

Available Operating Systems: All

Available Languages: reporting

 Types of Functions

Using Functions 1-7

Date and Time Functions
The following functions manipulate dates and times. For details, see Chapter 5, Date and
Time Functions.

Standard Date and Time Functions
DATEADD function

Adds or subtracts years, months, or days to or from a date.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

DATECVT function
Converts dates from one date format to another.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

DATEDIF function
Calculates the difference between two dates, expressed as years, months, or days.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

DATEMOV function
Moves a date to a significant point on the calendar.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

HADD function
Increments a date-time field by a given number of units.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

HCNVRT function
Converts a date-time field to alphanumeric format for use with operators such as
EDIT, CONTAINS, and LIKE.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

Introducing Functions

1-8 Information Builders

HDATE function
Extracts the date portion of a date-time field and converts it to a date format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

HDIFF function
Finds the number of boundaries of a given type crossed going from date 2 to date 1.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

HDTTM function
Converts a date field to a date-time field. The time portion is set to midnight.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

HGETC function
Stores the current date and time in a date-time field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000 NT/2000

Available Languages: reporting, Maintain

HHMMSS function
Retrieves the current time from the system.

Available Operating Systems: All

Available Languages: reporting, Maintain

HINPUT function
Converts an alphanumeric string to a date-time value.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

HMIDNT function
Changes the time portion of a date-time field to midnight (all zeroes).

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

 Types of Functions

Using Functions 1-9

HNAME function
Extracts a specified component from a date-time field and returns it in alphanumeric
format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

HPART function
Extracts a specified component from a date-time field and returns it in numeric
format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

HSETPT function
Inserts the numeric value of a specified component into a date-time field.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

HTIME function
Converts the time portion of a date-time field to a numeric number of milliseconds
(if the first argument is 8) or microseconds (if the first argument is 10).

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

TODAY function
Retrieves the current date from the system.

Available Operating Systems: All

Available Languages: reporting, Maintain

Introducing Functions

1-10 Information Builders

Legacy Date Functions
AYM function

Adds or subtracts months from dates that are in year-month format.

Available Operating Systems: OS/390, UNIX, VM/CMS, Windows NT/2000

Available Languages: reporting, Maintain

AYMD function
Adds or subtracts days from dates that are in year-month-day format.

Available Operating Systems:OS/390, UNIX, VM/CMS, Windows NT/2000

Available Languages: reporting, Maintain

CHGDAT function
Rearranges the year, month, and day portions of dates, and converts dates between
long and short date formats.

Available Operating Systems: OS/390, UNIX, VM/CMS, Windows NT/2000

Available Languages: reporting, Maintain

DA functions
Convert dates to the corresponding number of days elapsed since December 31,
1899.

DADMY converts dates in day-month-year format.

DADYM converts dates in day-year-month format.

DAMDY converts dates in month-day-year format.

DAMYD converts dates in month-year-day format.

DAYDM converts dates in year-day-month format.

DAYMD converts dates in year-month-day format.

Available Operating Systems: All

Available Languages: reporting, Maintain

DMY, MDY, and YMD functions
Calculate the difference between two dates.

Available Operating Systems: All

Available Languages: reporting, Maintain

DOWK[L] functions
Determine the day of the week for dates.

Available Operating Systems: All

Available Languages: reporting, Maintain

 Types of Functions

Using Functions 1-11

DT functions
Convert the number of days elapsed since December 31, 1899 to the corresponding
date.

DTDMY converts numbers to day-month-year dates.

DTDYM converts numbers to day-year-month dates.

DTMDY converts numbers to month-day-year dates.

DTMYD converts numbers to month-year-day dates.

DTYDM converts numbers to year-day-month dates.

DTYMD converts numbers to year-month-day dates.

Available Operating Systems: All

Available Languages: reporting, Maintain

GREGDT function
Converts dates in Julian format to year-month-day format.

Available Operating Systems: All

Available Languages: reporting, Maintain

JULDAT function
Converts dates from year-month-day format to Julian (year-day format).

Available Operating Systems: All

Available Languages: reporting, Maintain

YM function
Calculates the number of months that elapse between two dates. The dates must be in
year-month format.

Available Operating Systems: All

Available Languages: reporting, Maintain

Introducing Functions

1-12 Information Builders

Format Conversion Functions
The following functions convert fields from one format to another. For details, see
Chapter 6, Format Conversion Functions.

ATODBL function
Converts a number in alphanumeric format to double-precision format.

Available Operating Systems: All

Available Languages: reporting, Maintain

EDIT function
Converts an alphanumeric field to numeric or a numeric field to alphanumeric.

Available Operating Systems: OS/390, UNIX, VM/CMS, Windows NT/2000

Available Languages: reporting

FTOA function
Converts a number in a numeric format to alphanumeric format.

Available Operating Systems: All

Available Languages: reporting, Maintain

HEXBYT function
Obtains the ASCII or EBCDIC character equivalent of a decimal integer value.

Available Operating Systems: AS/400, HP, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

ITONUM function
Converts large binary integers in non-FOCUS files to double-precision format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

ITOPACK function
Converts large binary integers in non-FOCUS files to packed-decimal format.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

ITOZ function
Converts numbers from numeric format to zoned format for extract files.

Available Operating Systems: AS/400, HP, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

 Types of Functions

Using Functions 1-13

PCKOUT function
Writes packed numbers of varying lengths (between one and 16 bytes) to extract
files.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

UFMT function
Converts characters in alphanumeric field values to hexadecimal (HEX)
representation.

Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain

Numeric Functions
The following functions perform calculations on numeric constants or fields. For details,
see Chapter 7, Numeric Functions.

ABS function
Returns the absolute value of its argument.

Available Operating Systems: All

Available Languages: reporting, Maintain

ASIS function
In Dialogue Manager, distinguishes between a blank and a zero.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, Windows
NT/2000

Available Languages: reporting

BAR function
Produces horizontal bar charts in reports.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

CHKPCK function
Verifies that the value of a packed field is in packed format.

Available Operating Systems: All

Available Languages: reporting, Maintain

DMOD, FMOD, and IMOD functions
Calculate the remainder from a division.

Available Operating Systems: All

Available Languages: reporting, Maintain

Introducing Functions

1-14 Information Builders

EXP function
Raises the number “e” to a power you specify.

Available Operating Systems: All

Available Languages: reporting, Maintain

EXPN function
Evaluates an argument expressed in scientific notation.

Available Operating Systems: AS/400, OpenVMS, Windows NT/2000

Available Languages: reporting

INT function
Returns the integer part of its argument.

Available Operating Systems: All

Available Languages: reporting, Maintain

LOG function
Returns the natural logarithm of its argument.

Available Operating Systems: AS/400, HP, OpenVMS, OS/390, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

MAX and MIN functions
Return the maximum or minimum value from a list of arguments.

Available Operating Systems: All

Available Languages: reporting, Maintain

PRDNOR and PRDUNI functions
Generate reproducible random numbers.

Available Operating Systems: All

Available Languages: reporting, Maintain

RDNORM, and RDUNIF functions
Generate random numbers.

Available Operating Systems: All

Available Languages: reporting, Maintain

SQRT function
Returns the square root of its argument.

Available Operating Systems: All

Available Languages: reporting, Maintain

 Types of Functions

Using Functions 1-15

System Functions
The following functions call the operating system to obtain information about the
operating environment or to use a system service. For details, see Chapter 8, System
Functions.

FEXERR function
Retrieves error messages.

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

FINDMEM function
Determines if a specific member of a partitioned data set exists.

Available Operating Systems: OS/390, VM/CMS

Available Languages: reporting, Maintain

GETPDS function
Determines if a specific member of a partitioned data set exists, and if so, returns the
data set name.

Available Operating Systems: OS/390

Available Languages: reporting, Maintain

GETUSER function
Retrieves the user ID from the system.

Available Operating Systems: All

Available Languages: reporting, Maintain

HHMMSS function
Retrieves the current time from the system.

Available Operating Systems:

Available Languages: reporting, Maintain

MVSDYNAM function
Passes a DYNAM command to the command processor.

Available Operating Systems: OS/390, VM/CMS

Available Languages: reporting, Maintain

TODAY function
Retrieves the current date from the system.

Available Operating Systems: All

Available Languages: reporting, Maintain

Using Functions 2-1

CHAPTER 2

Accessing and Invoking a Function

Topics:
• Invoking a Function

• Using an Argument in a Function

• Using a Function in a FOCUS
Command

• Using a Function With a Dialogue
Manager Command

• Using a Function in Another Function

• Using a Function in WHERE or IF
Criteria

• Using a Function in WHEN Criteria

• Using a Function in a RECAP
Command

• Accessing a Function

• Dynamic Language Environment
Support

This topic describes the considerations for supplying arguments
in a function, explains how to use a function in a command, and
how to access externally-stored functions.

Accessing and Invoking a Function

2-2 Information Builders

Invoking a Function
A function can be invoked in a command, or as part of an expression. It is invoked with
the function name, arguments, and, for some functions, an output field.

You can invoke a function from a FOCUS command, Dialogue Manager command, or
FML command. For details see the topic on the appropriate command.

Syntax How to Invoke a Function
function(arg1, arg2, ... [outputfield])

where:
function

Is the name of the function.
arg1, arg2, ...

Are the arguments.
outputfield

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks. This is required only for external functions.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Syntax How to Store Output in a Field
{DEFINE|COMPUTE} field/fmt = function(input1, input2,... outfield);

or
DEFINE FILE file
field/fmt = function(input1, input2,... outfield);

or
-SET &var = function(input1, input2,... outfield);

where:
field

Is the field in which the output is to be stored.
file

Is the file in which the virtual field will be created.
var

Is the variable in which the output is to be stored.
fmt

Is the format of the output field.
function

Is the name of the function, up to eight characters long.
input1, input2,...

Are the input function arguments, which are data values and fields that the function
needs to do its processing. For more information about arguments see Using an
Argument in a Function on page 2-3.

 Using an Argument in a Function

Using Functions 2-3

outfield

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Using an Argument in a Function
When using an argument in a function, there are several considerations. You must
understand what types of arguments are acceptable, the formats and lengths for these
arguments, and the number and order of arguments.

Argument Types
The following are acceptable arguments for a function:

• Numeric constant, such as 6 or 15.

• Date constant, such as 022894.

• Alphanumeric literal, such as STEVENS or NEW YORK NY. A literal must be
enclosed in single quotation marks.

• Number stored in alphanumeric format.

• Date in alphanumeric, numeric, or date format.

• Field name, such as FIRST_NAME or HIRE_DATE. A field can be a data source
field or temporary field. The field name can be up to 66-characters long or a
qualified field name, unique truncation, or alias.

• Expression, such as a numeric, date, or alphanumeric expression. An expression can
use arithmetic operators and the concatenation sign (|). For example, the following
are valid expressions:
CURR_SAL * 1.03

and
FN || LN

• Dialogue Manager variable, such as &CODE or &DDNAME.

• Format of the output value, enclosed in single quotation marks.

• As an input argument for a RECAP command, row or column reference (R notation,
E notation, or label) or names of other RECAP calculations.

• Another function.

Accessing and Invoking a Function

2-4 Information Builders

Argument Formats
Depending on the function, an argument can be in either alphanumeric, numeric, or date
format. If you supply an argument in the wrong format, you will cause an error or the
function will not return correct data. These are the types of formats:

• An alphanumeric argument is stored internally as one character per byte. An
alphanumeric argument can be a literal, an alphanumeric field, a number or date
stored in alphanumeric format, an alphanumeric expression, or the format of an
alphanumeric field. A literal is enclosed in single quotation marks, except when
specified in operating systems that support RUN commands (for example, -MVS
RUN).

• A numeric argument is stored internally as a binary or packed number. A numeric
argument includes integer (I), floating-point (F), double-precision (D), and packed
(P) formats. A numeric argument can be a numeric constant, field, or expression, or
the format of a numeric field.

All numeric arguments are converted to double-precision format when used with a
function, but results are returned in the format specified for your output field.

• A date argument can be in either alphanumeric, numeric, or date format. The list of
arguments for the individual function will specify what type of format the function
accepts. A date argument can be a date in alphanumeric, numeric or date format, a
date field or expression, or the format of a date field.

If you specify an argument with a two digit year, the function will specify a century
based on the DATEFNS, YRTHRESH, and DEFCENT settings.

Argument Length
An argument is passed to a function by reference, meaning that the memory location of
the argument is passed. Therefore, no indication of the length of the argument is implied.

When needed (for alphanumeric strings), the argument length must be passed as a
separate argument. Some functions require a length for the input arguments and output
arguments (for example, SUBSTR), and others use one length for both input and output
arguments (for example, UPCASE).

Be careful to ensure that all lengths are correct. Providing an incorrect length can cause
incorrect results:

• If the specified length is shorter than the actual length, a subset of a string is used.
For example, passing the argument 'ABCDEF' and specifying a length of 3 is treated
as a string of 'ABC'.

• If the specified length is too long, whatever is in memory beyond the length is
included. For example, passing an argument of 'ABC' and specifying a length of 6 is
treated as a string beginning with 'ABC' plus whatever three characters are in the
next three positions of memory. Depending on memory utilization, the extra three
characters can be anything.

• Some operating system routines are very sensitive to incorrectly specified lengths
and read into incorrectly formatted memory areas.

 Using a Function in a FOCUS Command

Using Functions 2-5

Number and Order of Arguments
The number of arguments required varies according to each function. Built-in functions
may require up to six arguments. Customized functions may require any number of
arguments. The maximum number of arguments per function, including the output
argument, is 28. If the function requires more than 28 arguments, you must use two or
more call statements to pass the arguments to the function.

Arguments must be specified in the order specified in the syntax of each function in this
manual. The required order varies between functions.

Using a Function in a FOCUS Command
A function can be called from the DEFINE command or Master File attribute, the
COMPUTE command, or VALIDATE command.

Syntax How to Use a Function in a COMPUTE or DEFINE Command
DEFINE [FILE filename]
tempfield[/format] = function (input1, input2, input3, ... [outfield]);

COMPUTE
tempfield[/format] = function (input1, input2, input3, ... [outfield]);

VALIDATE
tempfield[/format] = function (input1, input2, input3, ... [outfield]);

where:
filename

Is the data source to be used.
tempfield

Is the temporary field to be created by the DEFINE or COMPUTE command. This is
the same field specified by outfield. If the function returns output as the format of the
output value, the format of the temporary field must match the outfield argument.

/format

Is the format of the temporary field. The format is required if it is the first time the
field is defined; otherwise, it is optional.

function

Is the name of the function.
input1, input2, input3...

Are the arguments.
outfield

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks. This is required only for some functions.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Accessing and Invoking a Function

2-6 Information Builders

Using a Calculation or Compound IF Command With a COMPUTE
Command

In a calculation or compound IF command, you must specify the format for the output
value. There are two methods for this:

• Pre-define the format of the output field with a separate command. For example, in
the following, the AMOUNT field is pre-defined with the format D8.2 and the
function returns a value to the output field AMOUNT. The IF command tests if
AMOUNT is greater or less than 500 and stores the result in the calculated value.
AMOUNT_FLAG.
COMPUTE
AMOUNT/D8.2 =;
AMOUNT_FLAG/A5 = IF function(input1,input2,AMOUNT) GE 500
 THEN 'LARGE' ELSE 'SMALL';

• Specify the last argument in the argument list as the format. For example, in the
following, the command tests the returned value directly. This is possible because
the function defines the format of the return value (D8.2).
AMOUNT_FLAG/A5 = IF function(input1,input2,'D8.2') GE 500
 THEN 'LARGE' ELSE 'SMALL';

Using a Function With a Dialogue Manager
Command

You can use a function with Dialogue Manager. You can do this in the following ways:

• Store the result of a function in a variable. For details see Assigning the Result of a
Function to a Variable on page 2-7.

• Use a function in a -IF command. For details see Using a Function in a -IF
Command on page 2-8.

• Use a function in a -RUN command. For details see Using a Function in an
Operating System -RUN Command on page 2-9.

Dialogue Manager converts a numeric argument to double precision format whether or
not the argument type is supposed to be character. This means you must be careful when
supplying arguments for a function in Dialogue Manager. If Dialogue Manager converts
an argument to double-precision when you do not want it to, you will get incorrect
results. If the function expects an alphanumeric string and the input is a numeric string,
incorrect results will occur because of the conversion to double precision. To resolve this
problem, append a non-numeric character to the end of the string, but do not count this
extra character in the length of the argument. For example, to prevent the conversion of a
delimiter blank character (' ') to a double precision zero in the GETTOK function, include
a non-numeric character after the blank. GETTOK uses only the first character (the
blank) as a delimiter and the extra character prevents conversion to double precision.

 Using a Function With a Dialogue Manager Command

Using Functions 2-7

Assigning the Result of a Function to a Variable
You can store the result of a function in a variable. This is done with the -SET command,
which Dialogue Manager uses to create variables.

Dialogue Manager variables contain only alphanumeric data. If a function returns a
numeric value to a Dialogue Manager variable, the output is truncated to an integer and
converted to a character string before being stored in the variable.

Note: You cannot specify a Dialogue Manager amper variable for the output argument
unless you use the .EVAL suffix.

Syntax How to Store the Result of a Function in a Variable
-SET &variable = function(input1,&variable2[.LENGTH],...,'format');

where:
variable

Is the amper variable to which the returned value will be assigned.
function

Is the function.
input1

Is the first argument.
format

Is the format of the output value, enclosed in single quotation marks. You cannot
specify a Dialogue Manager amper variable for the output argument; however, you
may specify an amper variable as an input argument.

.LENGTH

Tests for the length. If a function requires the length of a character string as an input
argument, you may prompt for the character string, and test the length.

Example Preventing Conversion to Double Precision Format
In the following Dialogue Manager command, GETTOK extracts the third word from a
sentence stored in the &SN variable. The .LENGTH suffix passes the number of
characters in the sentence to the function. The extra character (%) is included to prevent
the conversion of a delimiter blank character to a double precision zero.
-SET &WORD3 = GETTOK (&SN, &SN.LENGTH, 3, ' %', 30, 'A30');

Example Using a Function in a -SET Command
In this example, the AYMD function, adds 14 days to the value of &INDATE. The
&INDATE variable for the input date is previously set in the procedure and is in the
six-digit year-month-day format.
-SET &OUTDATE = AYMD(&INDATE, 14, 'I6');

The format of the output date is a six-digit integer. Although the format (I6) indicates that
the output is an integer, it is stored in the &OUTDATE variable as a character string. For
this reason, if you display the value of &OUTDATE, you will not see slashes separating
the year, month, and day.

Accessing and Invoking a Function

2-8 Information Builders

Using a Function in a -IF Command
You can use a function in the Dialogue Manager -IF command.

Note: If a branching command must span more than one line, you can continue on the
next line by placing a dash in the first column.

Syntax How to Use a Function in a -IF Test
-IF function(args) relation expression GOTO label1 [ELSE GOTO label2];

where:
function(args)

Is the function and its arguments.
relation

Is an operator that determines the relationship between the function and expression,
for example, EQ or LE.

expression

Is a valid relation or logical expression. Literals do not need to be enclosed in single
quotation marks unless they contain commas or embedded blanks.

label1

Is a user-defined name of up to 12 characters. Do not use embedded blanks or the
name of any other Dialogue Manager command except -QUIT or -EXIT. Do not use
words that can be confused with functions, or arithmetic or logical operations.

The label text may precede or follow the -IF criteria in the procedure.
ELSE GOTO

Passes control to label2 when the -IF test fails.

 Using a Function With a Dialogue Manager Command

Using Functions 2-9

Example Using a Function in a -IF Command
In the following example, the result of the AYMD function provides a condition for a
-IF test. One of two requests is executed, depending on the result of the AYMD function.

-LOOP
1. -PROMPT &INDATE.ENTER START DATE IN YEAR-MONTH-DAY FORMAT OR ZERO TO EXIT:.
2. -IF &INDATE EQ 0 GOTO EXIT;
3. -SET &WEEKDAY = DOWK(&INDATE,'A4');
4. -TYPE START DATE IS &WEEKDAY &INDATE
5. -PROMPT &DAYS.ENTER ESTIMATED PROJECT LENGTH IN DAYS:.
6. -IF AYMD(&INDATE,&DAYS,'I6YMD') LT 960101 GOTO EARLY;

-TYPE LONG PROJECT
 -*EX LONGPROJ
7. -RUN

-GOTO LOOP
-EARLY
-TYPE SHORT PROJECT

 -*EX SHRTPROJ
8. -RUN

-GOTO LOOP
-EXIT

This procedure processes as follows:

1. The procedure prompts you for a start date of a project in YYMMDD format.

2. If you enter a 0, the procedure terminates execution.

3. The DOWK function obtains the day of week for the start date.

4. The -TYPE statement displays the day of week and date for the start of the project.

5. The procedure prompts you for the estimated length of the project in days.

6. The AYMD function calculates the date that the project will finish. If this date is
before January 1, 1996, the -IF statement branches to the label EARLY.

7. If the project will finish on or after January 1, 1996, the procedure types the words
LONG PROJECT and returns to the top of the procedure.

8. If the procedure branches to the label -EARLY, it types the words SHORT
PROJECT and returns to the top of the procedure.

Using a Function in an Operating System -RUN Command
You can call a function with all alphanumeric arguments with the Dialogue Manager
-CMS RUN, -TSO RUN, and -MVS RUN commands. These functions perform specific
tasks but typically do not return any values.

All numeric arguments in Dialogue Manager are stored in alphanumeric format and
require conversion before being passed to functions because unlike the -SET command,
operating system -RUN commands do not automatically convert numeric arguments to
double precision. For functions that require arguments in numeric format, you must first
convert the arguments into double-precision numbers using the ATODBL function.

If a function requires the length of a character string as an input argument, you may
prompt for the character string, then use the .LENGTH suffix to test the length.

Accessing and Invoking a Function

2-10 Information Builders

Syntax How to Use a Function in a RUN Command
{-CMS|-TSO|-MVS} RUN function, input1, input2, ... [,&output]

where:
function

Is the name of the function.
input1, input2,...

Are the arguments. Separate the function name and each argument with a comma.
Do not enclose alphanumeric literals in single quotation marks.

,&output

Is a Dialogue Manager variable. Include this if the function returns a value;
otherwise, omit it. If you specify an output variable, you must pre-define its length
using a -SET command.

For example, if the function requires an output argument that is eight bytes long, you
need to define the variable with eight characters enclosed in single quotation marks
before the function call:
-SET &output = '12345678';

Example Using a Function in a RUN Command
The following is an example of a function that does not return any values. Assume you
wrote a function called BLANKOUT that clears part of the screen on a Tektronix
terminal (a non-3270 terminal). The function reads one argument that indicates which
part of the screen to blank out. To clear the top half of the screen, you include this
command in a procedure:
-CMS RUN BLANKOUT, H1

or
-TSO RUN BLANKOUT, H1

 Using a Function in Another Function

Using Functions 2-11

Using a Function in Another Function
A function can serve as an argument for another function.

Example Using a Function in Another Function
The command
field = MAX(5000, function,(arguments, 'format'));

stores either the value 5000 or the value returned by the function, whichever is larger, in a
field.

Using a Function in WHERE or IF Criteria
A function may be used in WHERE or IF criteria. When this is done, the output value of
the function is compared against the test value.

Example Using a Function With a WHERE Test
In this example, the SUBSTR function extracts the first two characters as a substring. The
request prints an employee’s name and salary if the result of the function is MC.
TABLE FILE EMPLOYEE
PRINT FIRST_NAME LAST_NAME CURR_SAL
WHERE SUBSTR(15,LAST_NAME,1,2,2,'A2') IS 'MC';
END

The output is:
FIRST_NAME LAST_NAME CURR_SAL
---------- --------- --------
JOHN MCCOY $18,480.00
ROGER MCKNIGHT $16,100.00

Accessing and Invoking a Function

2-12 Information Builders

Using a Function in WHEN Criteria
A function may be used as WHEN criteria as part of a Boolean expression.

Example Using a Function in WHEN Criteria
The following example checks the values in LAST_NAME against the result of the
CHKFMT function. When a match does not occur, a subfoot is printed.
TABLE FILE EMPLOYEE
PRINT DEPARTMENT BY LAST_NAME
ON LAST_NAME SUBFOOT
"*** LAST NAME <LAST_NAME DOES MATCH MASK"
WHEN NOT CHKFMT(15, LAST_NAME,'SMITH ','I6');
END

The output is:
LAST_NAME DEPARTMENT
--------- ----------
BANNING PRODUCTION
BLACKWOOD MIS
CROSS MIS
GREENSPAN MIS
IRVING PRODUCTION
JONES MIS
MCCOY MIS
MCKNIGHT PRODUCTION
ROMANS PRODUCTION
SMITH MIS
 PRODUCTION
*** LAST NAME SMITH DOES MATCH MASK
STEVENS PRODUCTION

 Using a Function in a RECAP Command

Using Functions 2-13

Using a Function in a RECAP Command
You can use a function in a Financial Modeling Language (FML) RECAP command.

Syntax How to Use a Function Call in a RECAP Command
RECAP name[(n)|(n,m)|(n,m,i)][/format] = function(input1,...,'format2');

where:
name

Is the name of the calculation.
n

Displays the value in the column number specified by n. If you omit the column
number, the value appears in all columns.

n,m

Displays the value in all columns beginning with the column number specified by n
and ending with the column number specified by m.

n,m,i

Displays the value in the columns beginning at the column number specified by n
and ending with the column number specified by m by the interval specified by i. For
example, if n is specified as 1, m is specified as 5, and i is specified as 2, the value
will display in columns 1, 3, and 5.

format

Is the format of the calculation. The default value is the format of the report column.
function

Is the function.
input1,...

Are the arguments. The input arguments for a RECAP command can include
numeric constants, alphanumeric literals, row and column references (R notation, E
notation, or labels), and names of other RECAP calculations.

format2

Is the format of the function output value. If the calculation consists of only the
function, make sure this format agrees with the calculation’s format. If the
calculation format is larger than the column width, the value displays in that column
as asterisks.

Accessing and Invoking a Function

2-14 Information Builders

Example Using a Function in a RECAP Command
The following request sums the AMOUNT field for account 1010 using the label CASH,
account 1020 using the label DEMAND, and account 1030 using the label TIME. The
MAX function displays the maximum of these accounts:
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 AS 'CASH ON HAND' LABEL CASH OVER
1020 AS 'DEMAND DEPOSITS' LABEL DEMAND OVER
1030 AS 'TIME DEPOSITS' LABEL TIME OVER
BAR OVER
RECAP MAXCASH = MAX(CASH, DEMAND, TIME); AS 'MAX CASH'
END

The output is:
 AMOUNT

CASH ON HAND 8,784
DEMAND DEPOSITS 4,494
TIME DEPOSITS 7,961

MAX CASH 8,784

Accessing a Function
Many of the functions are built in and do not require any additional work to access them.

Some functions are stored externally in load libraries. The way these functions are
accessed is determined by your platform. The following topics describe how to access
Information Builders-supplied functions on specific platforms.

You can also access private site-written functions. If you have a private collection of
functions (that is, you created your own or use customized functions), do not store them
in the function library. Store them separately to avoid overwriting them whenever your
site installs a new release.

Storing and Accessing a Function on OS/390
In OS/390, load libraries are partitioned data sets containing link-edited modules. These
load libraries are stored as part of EDALIB.LOAD or FUSELIB.LOAD. In addition to
this load library, your site may have private function collections stored in separate load
libraries.

OS/390 Batch Allocation
To use a function stored as a load library, allocate the load library to the ddname
USERLIB in your JCL or CLIST.

The search order is USERLIB, STEPLIB, JOBLIB, link pack area, and linklist.

 Accessing a Function

Using Functions 2-15

Example Allocating Load Libraries on OS/390
The following example allocates functions stored in BIGLIB.LOAD in JCL:
//USERLIB DD DISP=SHR,DSN=BIGLIB.LOAD

TSO Allocation
To use external functions in TSO, allocate the load libraries to ddname USERLIB using
the ALLOCATE command. The ALLOCATE command can be issued:

• In TSO before entering your FOCUS session.

• Before executing your request.

• In your PROFILE FOCEXEC.

Note: If you have private function collections, you need to allocate those load libraries in
addition to the FUSELIB load library. If you are in a FOCUS session, you may use the
DYNAM ALLOCATE command to specify the allocation.

Syntax How to Allocate a Load Library
{MVS|TSO} ALLOCATE FILE(USERLIB) DSN(lib1 lib2 lib3 ...) SHR

where:
MVS|TSO

Is the prefix. Specify the prefix if you issue the ALLOCATE command from your
application or include it in your PROFILE FOCEXEC.

USERLIB

Is the ddname to which you allocate function load libraries.
lib1 lib lib3...

Are the names of the load libraries. (This concatenates the data sets to ddname
USERLIB.)

Accessing and Invoking a Function

2-16 Information Builders

Example Allocating the FUSELIB.LOAD Load Library
The following commands allocate the FUSELIB.LOAD load library.
TSO ALLOC FILE(USERLIB) DSN('MVS.FUSELIB.LOAD') SHR

or
DYNAM ALLOC FILE USERLIB DA MVS.FUSELIB.LOAD SHR

Suppose a report request calls two functions: BENEFIT stored in library
SUBLIB.LOAD, and EXCHANGE stored in library BIGLIB.LOAD. To concatenate the
BIGLIB and SUBLIB load libraries in the allocation for ddname USERLIB, issue the
following commands:
DYNAM ALLOC FILE USERLIB DA SUBLIB.LOAD SHR
DYNAM ALLOC FILE BIGLIB DA BIGLIB.LOAD SHR
DYNAM CONCAT FILE USERLIB BIGLIB

The load libraries are searched in the order that you specified them in the ALLOCATE
command.

Or, for batch mode, concatenate the load library to the ddname STEPLIB or USERLIB in
your JCL:
//FOCUS EXEC PGM=FOCUS
//STEPLIB DD DSN=FOCUS.FOCLIB.LOAD,DISP=SHR
// DD DSN=FOCUS.FUSELIB.LOAD,DISP=SHR
 .
 .
 .

The search order is USERLIB, STEPLIB, JOBLIB, and link pack area and linklist.

Storing and Accessing a Function on UNIX
No extra work is required.

Storing and Accessing a Function on VM/CMS
In VM/CMS, functions are stored as:

• The load library FUSELIB LOADLIB. In addition to the FUSELIB load library,
your site may have private collections of functions stored in separate libraries or text
files. If you create your own function in a text file or text library, the function must
be 31-bit addressable and created as part of a LOADLIB.

• The text library FUSELIB TXTLIB. A text library is a file that is composed of
multiple text files called members. Functions can be stored as members of one or
more text libraries. The file type for text libraries is TXTLIB.

• Text files. The file name of a text file must match the function name. The file type is
TEXT. For example, the EXCHANGE function stored as a text file has the file
identifier (ID):
EXCHANGE TEXT

 Accessing a Function

Using Functions 2-17

Accessing a Function Automatically
For a function stored as a text file in VM/CMS, the access method is automatic. When
your request calls the function, the attached disks are searched in alphabetical order,
provided that you have proper authorization.

Reference Search Sequence in VM/CMS
Functions are searched for in the standard VM/CMS search sequence:

1. Load libraries, in the order that you specified them in the GLOBAL LOADLIB
command.

2. Text files, searching attached disks in alphabetical order.

3. Text libraries, in the order that you specified them in the GLOBAL TXTLIB
command.

Searching for a Function Library
For functions stored in a load or text library in VM/CMS, you need to issue the CMS
GLOBAL command. The GLOBAL command enables your application to search
specified libraries for the functions. You can issue the GLOBAL command:

• Before entering FOCUS.

• In a profile.

• From a procedure.

You must also specify a system library for a function written in a language such as
COBOL and PL/1, and for a function that calls system functions. FUSELIB functions do
not require any other system libraries.

If you issue two GLOBAL commands of the same type, the second command replaces
the first. Once a library is opened (as a result of referencing one of its members), the
library cannot be changed until you exit.

If you have a private function collection, you need to specify the libraries in the
GLOBAL command in addition to the FUSELIB load library.

Accessing and Invoking a Function

2-18 Information Builders

Syntax How to Enable Your Application to Search a Specified Library
[CMS] GLOBAL {LOADLIB|TXTLIB} library1 library2 library3 ...

where:
CMS

Is required if you issue the GLOBAL command from a profile or procedure, or if
you include it in a profile.

LOADLIB

Indicates the library is a load library.
TXTLIB

Indicates the library is a text library.
library1 library2 library3...

Are the file names of the load and text libraries containing the functions. The
maximum number of libraries is 63.

Syntax How to List Libraries Specified by the GLOBAL Command
CMS QUERY {LOADLIB|TXTLIB}

where:
LOADLIB

Indicates the library is a load library.
TXTLIB

Indicates the library is a text library.

Example Accessing a Library With the GLOBAL Command
The following command, issued in the global profile, accesses the FUSELIB library:
CMS GLOBAL LOADLIB FUSELIB

Example Accessing Multiple Libraries With the GLOBAL Command
The following command, issued in a procedure, accesses the SUBLIB and BIGLIB
libraries:
CMS GLOBAL TXTLIB SUBLIB BIGLIB

 Accessing a Function

Using Functions 2-19

Adding and Deleting a Subroutine Library
The GLOBAL library list automatically contains the FUSELIB subroutine library. If you
need to add or delete private subroutine libraries you can use two CMS EXECs,
FOCADLIB and FOCDELIB.

Before adding LOADLIBs to the GLOBAL list, the existing list is saved. Then the
required and optional LOADLIBs are added in front of any libraries you may have
specified. After a request, the prior GLOBAL environment is restored.

Prior entries can be retained in the GLOBAL list and new entries added by using the
FOCADLIB EXEC. To delete entries while maintaining others in the list, use the
FOCDELIB EXEC. For both FOCADLIB and FOCDELIB, the output from the EXEC is
the return code of the GLOBAL command. The EXECs FOCADLIB and FOCDELIB
must be found in the CMS search sequence (A-Z).

Syntax How to Add and Delete a Subroutine Library
CMS EX {FOCADLIB|FOCDELIB} libtype lib1 [lib2 lib3...] [(QUIET]
where:
FOCADLIB

Adds libraries to the beginning of the GLOBAL library list.
FOCDELIB

Deletes libraries from the GLOBAL library list.
libtype

Is the library type, for example, LOADLIB or TXTLIB.
lib1 lib2 lib3...

Are the names of the libraries to be added or deleted.
QUIET

Suppresses messages from the GLOBAL command. The open parenthesis is
required.

Note: FUSELIB routines now reside in FUSELIB LOADLIB (rather than in a TXTLIB).
Issuing GLOBAL TXTLIB FUSELIB still works because the TXTLIB still exists.
However, VM/CMS loads routines from the LOADLIB before searching the TXTLIBs.

Accessing and Invoking a Function

2-20 Information Builders

Dynamic Language Environment Support
IBM’s Dynamic Language Environment (LE) uses a common run-time environment for
all LE-supported high-level languages (HLLs).

The IBMLE setting controls the LE run-time environment by identifying which LE
libraries to load. By default, the COBOL and C libraries are loaded. On OS/390, you
need to issue the SET IBMLE command in order to access LE-compiled PL/I or
FORTRAN user-written subroutines. On VM/CMS, the setting has no effect; LE and
non-LE versions of subroutines in all HLLs work properly regardless of the IBMLE
setting. On OS/390, non-LE versions of subroutines work properly regardless of the
IBMLE setting.

Loading extra libraries uses some additional memory below the line. Once this memory
has been used, it cannot be released during the FOCUS session. Therefore, you can
control this memory use by waiting to issue the SET IBMLE command until you need to
execute a FOCEXEC that makes a call to an LE-compliant PL/I or FORTRAN
subroutine.

Syntax How to Control the LE Run-Time Environment
SET IBMLE = {OFF|ON|ALL}

where:
OFF

Loads the libraries for LE-compiled C and COBOL subroutines. This value is the
default.

ON

Adds the libraries for LE-compiled PL/I subroutines to the C and COBOL libraries.
Once the ON setting has been established, you cannot issue the OFF setting. You can
issue the ALL setting to add libraries for LE-compiled FORTRAN subroutines.

ALL

Adds the libraries for LE-compliant FORTRAN and PL/I subroutines (if they are not
already loaded) to the C and COBOL libraries. Once the ALL setting has been
established, you cannot issue the OFF or ON setting.

Using Functions 3-1

CHAPTER 3

Character Functions

Topics:
• Alphabetical List of Character

Functions

Character functions manipulate alphanumeric fields and
character strings.

Character Functions

3-2 Information Builders

ARGLEN: Measuring the Length of a String
Available Operating Systems: All

Available Languages: reporting, Maintain

The ARGLEN function measures the length of a character string within a field, excluding
trailing spaces. The field format specifies the length of the field, including trailing spaces.

In Dialogue Manager, you can measure the length of a supplied character string using the
.LENGTH suffix.

Syntax How to Measure the Length of a String
ARGLEN(inlength, infield, outfield)

where:
inlength

Integer

Is the length of the field containing the character string.
infield

Alphanumeric

Is the name of the field containing the character string.
outfield

Integer

Is the field to which the integer result is returned, or the format of the output value
enclosed in single quotation marks.

In Dialogue Manager, the format must be specified. In Maintain, the name of the
field must be specified.

Example Measuring the Length of a String
In the following example, ARGLEN determines the length of the character string in
LAST_NAME and stores the result in NAME_LEN.
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
NAME_LEN/I3 = ARGLEN(15, LAST_NAME, NAME_LEN);
WHERE DEPARTMENT EQ 'MIS'
END

The output is:
LAST_NAME NAME_LEN
--------- --------
SMITH 5
JONES 5
MCCOY 5
BLACKWOOD 9
GREENSPAN 9
CROSS 5

 ASIS: Distinguishing Between a Space and a Zero

Using Functions 3-3

ASIS: Distinguishing Between a Space and a Zero
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, Windows NT/2000

Available Languages: reporting

The ASIS function distinguishes between a space and a zero in Dialogue Manager. It
differentiates between a numeric string constant or variable defined as a numeric string
(number within single quotation marks), and a field defined simply as numeric. ASIS
forces a variable to be evaluated as it is entered rather than be converted to a number. It is
used in Dialogue Manager equality expressions only.

Syntax How to Distinguish Between a Space and a Zero
ASIS(argument)

where:
argument

Alphanumeric

Is the value to evaluate. You may supply the actual value, the name of a field that
contains the value, or an expression that returns the value. An expression can call a
function.

If you specify an alphanumeric literal, enclose it in single quotation marks. If you
specify an expression, use parentheses as needed to ensure the correct order of
evaluation.

Example Distinguishing Between a Space and a Zero
The first request does not use the ASIS function. No difference is detected between
variables defined as space and 0.
-SET &VAR1 = ' ';
-SET &VAR2 = 0;
-IF &VAR2 EQ &VAR1 GOTO ONE;
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 NOT TRUE
-QUIT
-ONE
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 TRUE

The output is:
VAR1 EQ VAR2 0 TRUE

The next request uses ASIS to distinguish between the two variables.
-SET &VAR1 = ' ';
-SET &VAR2 = 0;
-IF &VAR2 EQ ASIS(&VAR1) GOTO ONE;
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 NOT TRUE
-QUIT
-ONE
-TYPE VAR1 &VAR1 EQ VAR2 &VAR2 TRUE

The output is:
VAR1 EQ VAR2 0 NOT TRUE

Character Functions

3-4 Information Builders

BITSON: Determining If a Bit is On or Off
Available Operating Systems: All

Available Languages: reporting, Maintain

The BITSON function evaluates an individual bit within a character string to determine
whether it is on or off. If the bit is on, the function returns a value of 1; if the bit is off, it
returns a value of 0. This function is useful in interpreting multi-punch data, where each
punch conveys an item of information.

The result of the BITSON function varies between operating systems.

Syntax How to Determine If a Bit is On or Off
BITSON(bitnumber, string, outfield)

where:
bitnumber

Integer

Is the number of the bit to be evaluated, counted from the left-most bit in the
character string.

string

Alphanumeric

Is the string. This can be the character string enclosed in single quotation marks, or
the field that contains the character string. The character string is in multiple 8-bit
blocks.

outfield

Integer or Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

 BITVAL: Evaluating a Bit String a Binary Integer

Using Functions 3-5

Example Evaluating a Bit in a Field
In this request, BITSON evaluates the 24th bit of LAST_NAME and stores the result in
BIT_24.
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
BIT_24/I1 = BITSON(24, LAST_NAME, BIT_24);
WHERE DEPARTMENT EQ 'MIS'
END

The output is:
LAST_NAME BIT_24
--------- ------
SMITH 1
JONES 1
MCCOY 1
BLACKWOOD 1
GREENSPAN 1
CROSS 0

BITVAL: Evaluating a Bit String a Binary Integer
Available Operating Systems: All

Available Languages: reporting, Maintain

The BITVAL function evaluates a string of bits within a character string. The bit string
can be any group of bits within the character string and can cross byte and word
boundaries. The function evaluates the bit string as a binary integer and returns the
corresponding value.

Note: The result of the BITVAL function differs between operating systems.

Syntax How to Evaluate a Bit String
BITVAL(string, startbit, number, outfield)

where:
string

Alphanumeric

Is the string. This can be the character string enclosed in single quotation marks, or
the field that contains the string.

startbit

Integer

Is the number of the first bit in the bit string, counting from the left-most bit in the
character string. If this argument is less than or equal to 0, the function returns a
value of zero.

number

Integer

Is the number of bits in the bit string. If this argument is less than or equal to 0, the
function returns a value of zero.

Character Functions

3-6 Information Builders

outfield

Integer

Is the name of the field that contains the integer equivalent, or the format of the
output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Evaluating a Bit String
In this example, BITVAL evaluates the bits 12 through 20 of LAST_NAME and stores
the result in a field with the format I5.
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
STRING_VAL/I5 = BITVAL(LAST_NAME, 12, 9, 'I5');
WHERE DEPARTMENT EQ 'MIS'
END

The output is:
LAST_NAME STRING_VAL
--------- ----------
SMITH 332
JONES 365
MCCOY 60
BLACKWOOD 316
GREENSPAN 412
CROSS 413

 BYTVAL: Translating a Character to a Decimal Value

Using Functions 3-7

BYTVAL: Translating a Character to a Decimal Value
Available Operating Systems: All

Available Languages: reporting, Maintain

The BYTVAL function translates a character to the ASCII or EBCDIC decimal value
that represents it.

Syntax How to Translate a Character
BYTVAL(character, outfield)

where:
character

Alphanumeric

Is the character to be translated. You can specify a field or amper variable that
contains the character, or specify the character itself. If you supply more than one
character, the function evaluates the first one.

outfield

Integer

Is the name of the field that contains the corresponding decimal value, or the format
of the output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Translating the First Character of a Field
In this example, BYTVAL translates the first character of LAST_NAME into its ASCII
or EBCDIC decimal value, and stores the result in LAST_INIT_CODE. Since the input
string has more than one character, BYTVAL evaluates the first one.
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND
COMPUTE LAST_INIT_CODE/I3 = BYTVAL(LAST_NAME, 'I3');
WHERE DEPARTMENT EQ 'MIS'
END

The output on an ASCII platform is:
LAST_NAME LAST_INIT_CODE
--------- --------------
SMITH 83
JONES 74
MCCOY 77
BLACKWOOD 66
GREENSPAN 71
CROSS 67

Character Functions

3-8 Information Builders

The output on an EBCDIC platform is:
LAST_NAME LAST_INIT_CODE
--------- --------------
SMITH 226
JONES 209
MCCOY 212
BLACKWOOD 194
GREENSPAN 199
CROSS 195

CHKFMT: Checking the Format of a String
Available Operating Systems: All

Available Languages: reporting, Maintain
The CHKFMT function checks a character string for incorrect characters or character
types. It compares each string to a second string, called a mask, comparing each character
in the first string to the corresponding character in the mask. If all characters in the string
match the characters or character types in the mask, CHKFMT returns the value 0.
Otherwise, CHKFMT returns a value equal to the position of the first character in the
string not matching the mask.

If the mask is shorter than the character string, the function checks only the portion of the
character string corresponding to the mask. For example, if you are using a four-character
mask to test a nine-character string, only the first four characters in the string are
checked; the rest are returned as a no match with CHKFMT giving the first non-matching
position as the result.

Syntax How to Check the Format of a String
CHKFMT(numchar, string, 'mask', outfield)

where:
numchar

Integer

Is the number of characters you want to compare against the mask.
string

Alphanumeric

Is the character string to be checked. This can be the character string enclosed in
single quotation marks, or the field that contains the character string.

 CHKFMT: Checking the Format of a String

Using Functions 3-9

'mask'

Alphanumeric

Is the mask, which contains the comparison characters enclosed in single quotation
marks.

Some characters in the mask are generic and represent character types. If a character
in the string is compared to one of these characters and is the same type, it matches.
Generic characters are:

A Any of the letters A-Z (uppercase or lowercase).

9 Any of the digits 0-9.

X Any of the letters A-Z or digits 0-9.

$ Any character.

Any other character in the mask represents only that character. For example, if the
third character in the mask is B, the third character in the string must be B to match.

outfield

Integer or Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Checking the Format of a Field
In this example, CHKFMT examines the EMP_ID field to see if it has nine numeric
characters starting with 11, and stores the result in CHK_ID.
TABLE FILE EMPLOYEE
PRINT EMP_ID AND LAST_NAME AND
COMPUTE CHK_ID/I3 = CHKFMT(9, EMP_ID, '119999999', CHK_ID);
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:
EMP_ID LAST_NAME CHK_ID
------ --------- ------
071382660 STEVENS 1
119265415 SMITH 0
119329144 BANNING 0
123764317 IRVING 2
126724188 ROMANS 2
451123478 MCKNIGHT 1

Character Functions

3-10 Information Builders

Example Checking the Format of a Field With MODIFY on OS/390
The following MODIFY procedure adds records of new employees to the EMPLOYEE
data source. Each transaction begins as an employee ID that is alphanumeric with the first
five characters as digits. The procedure rejects records with other characters in the
employee ID.
MODIFY FILE EMPLOYEE
PROMPT EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
MATCH EMP_ID
 ON MATCH REJECT
 ON NOMATCH COMPUTE
 BAD_CHAR/I3 = CHKFMT (5, EMP_ID, '99999', BAD_CHAR);
 ON NOMATCH VALIDATE
 ID_TEST = IF BAD_CHAR EQ 0 THEN 1 ELSE 0;
 ON INVALID TYPE
 "BAD EMPLOYEE ID: <EMP_ID"
 "INVALID CHARACTER IN POSITION <BAD_CHAR"
 ON NOMATCH INCLUDE
 LOG INVALID MSG OFF
DATA

A sample execution is:
>
 EMPLOYEEFOCUS A ON 12/05/96 AT 15.42.03
 DATA FOR TRANSACTION 1

 EMP_ID =
111w2
 LAST_NAME =
johnson
 FIRST_NAME =
greg
 DEPARTMENT =
production
 BAD EMPLOYEE ID: 111W2
 INVALID CHARACTER IN POSITION 4
 DATA FOR TRANSACTION 2

 EMP_ID =
end
 TRANSACTIONS: TOTAL = 1 ACCEPTED= 0 REJECTED= 1
 SEGMENTS: INPUT = 0 UPDATED = 0 DELETED = 0
>

 CTRAN: Translating One Character to Another

Using Functions 3-11

The procedure processes as follows:

1. The procedure prompts you for an employee ID, last name, first name, and
department assignment. You enter the following data:

EMP_ID: 111w2
LAST_NAME: johnson
FIRST_NAME: greg
DEPARTMENT: production

2. The procedure searches the data source for the ID 111W2. If it does not find this ID,
it continues processing the transaction.

3. The CHKFMT function checks the ID against the mask 99999, which represents five
digits.

4. The fourth character in the ID, the letter W, is not a digit. The function returns the
value 4 to the BAD_CHAR field.

5. The VALIDATE command tests the BAD_CHAR field. Since BAD_CHAR is not
equal to 0, the procedure rejects the transaction and displays a message indicating the
position of the invalid character in the ID.

CTRAN: Translating One Character to Another
Available Operating Systems: All

Available Languages: reporting, Maintain
The CTRAN function translates a character within a string to another character based on
its decimal value. This function is especially useful for changing replacement characters
to unavailable characters, or to characters that are difficult to input or unavailable on your
keyboard. It can also be used for inputting characters that are difficult to enter when
responding to a Dialogue Manager -PROMPT command, such as a comma or apostrophe.
It eliminates the need to enclose entries in single quotation marks.

To use this function, you need to know the decimal equivalent of the characters in
internal machine representation. Printable EBCDIC or ASCII characters and their
decimal equivalents are listed in character charts.

Syntax How to Translate One Character to Another
CTRAN(charlen, string, decimal, decvalue, outfield)

where:
charlen

Integer

Is the length in characters of the input string.
string

Alphanumeric

Is the character string enclosed in single quotation marks, or the field that contains
the string.

Character Functions

3-12 Information Builders

decimal

Integer

Is the ASCII or EBCDIC decimal value of the character to be translated.
decvalue

Integer

Is the ASCII or EBCDIC decimal value of the character to be used as a substitute for
decimal.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Translating Spaces to Underscores on an ASCII Platform
In this example, CTRAN translates the spaces in ADDRESS_LN3 (ASCII decimal value
32) to underscores (ASCII decimal value 95), and stores the result in ALT_ADDR.
TABLE FILE EMPLOYEE
PRINT ADDRESS_LN3 AND COMPUTE
ALT_ADDR/A20 = CTRAN(20, ADDRESS_LN3, 32, 95, ALT_ADDR);
BY EMP_ID
WHERE TYPE EQ 'HSM'
END

The output is:
EMP_ID ADDRESS_LN3 ALT_ADDR
------ ----------- --------
117593129 RUTHERFORD NJ 07073 RUTHERFORD_NJ_07073_
119265415 NEW YORK NY 10039 NEW_YORK_NY_10039___
119329144 FREEPORT NY 11520 FREEPORT_NY_11520___
123764317 NEW YORK NY 10001 NEW_YORK_NY_10001___
126724188 FREEPORT NY 11520 FREEPORT_NY_11520___
451123478 ROSELAND NJ 07068 ROSELAND_NJ_07068___
543729165 JERSEY CITY NJ 07300 JERSEY_CITY_NJ_07300
818692173 FLUSHING NY 11354 FLUSHING_NY_11354___

 CTRAN: Translating One Character to Another

Using Functions 3-13

Example Translating Spaces to Underscores on an EBCDIC Platform
In this example, CTRAN translates the spaces in ADDRESS_LN3 (EBCDIC decimal
value 64) to underscores (EBCDIC decimal value 109), and stores the result in
ALT_ADDR.
TABLE FILE EMPLOYEE
PRINT ADDRESS_LN3 AND COMPUTE
ALT_ADDR/A20 = CTRAN(20, ADDRESS_LN3, 64, 95, ALT_ADDR);
BY EMP_ID
WHERE TYPE EQ 'HSM'
END

The output is:
EMP_ID ADDRESS_LN3 ALT_ADDR
------ ----------- --------
117593129 RUTHERFORD NJ 07073 RUTHERFORD_NJ_07073_
119265415 NEW YORK NY 10039 NEW_YORK_NY_10039___
119329144 FREEPORT NY 11520 FREEPORT_NY_11520___
123764317 NEW YORK NY 10001 NEW_YORK_NY_10001___
126724188 FREEPORT NY 11520 FREEPORT_NY_11520___
451123478 ROSELAND NJ 07068 ROSELAND_NJ_07068___
543729165 JERSEY CITY NJ 07300 JERSEY_CITY_NJ_07300
818692173 FLUSHING NY 11354 FLUSHING_NY_11354___

Character Functions

3-14 Information Builders

Example Inserting Accented Letter E’s With MODIFY
This MODIFY request enables you to enter the names of new employees containing the
accented letter È, as in the name Adèle Molière. The equivalent EBCDIC decimal value
for an asterisk is 92, for an È, 159.

If you are using the Hot Screen facility, some unusual characters cannot be displayed. If
Hot Screen does not support the character you need, disable Hot Screen with SET
SCREEN=OFF and issue the RETYPE command. If your terminal can display the
character, the character will appear. The display of special characters depends upon your
software and hardware; not all special characters may display.

The request is:
MODIFY FILE EMPLOYEE
CRTFORM
"***** NEW EMPLOYEE ENTRY SCREEN *****"
" "
"ENTER EMPLOYEE'S ID: <EMP_ID"
" "
"ENTER EMPLOYEE'S FIRST AND LAST NAME"
"SUBSTITUTE *'S FOR ALL ACCENTED E CHARACTERS"
" "
"FIRST_NAME: <FIRST_NAME LAST_NAME: <LAST_NAME"
" "
"ENTER THE DEPARTMENT ASSIGNMENT: <DEPARTMENT"
MATCH EMP_ID
 ON MATCH REJECT
 ON NOMATCH COMPUTE
 FIRST_NAME/A10 = CTRAN(10, FIRST_NAME, 92, 159, 'A10');
 LAST_NAME/A15 = CTRAN(15, LAST_NAME, 92, 159, 'A15');
 ON NOMATCH TYPE "FIRST_NAME: <FIRST_NAME LAST_NAME:<LAST_NAME"
 ON NOMATCH INCLUDE
DATA
END

A sample execution follows:

***** NEW EMPLOYEE ENTRY SCREEN *****

ENTER EMPLOYEE'S ID: 999888777

ENTER EMPLOYEE'S FIRST AND LAST NAME
SUBSTITUTE *'S FOR ALL ACCENTED E CHARACTERS

FIRST_NAME: AD*LE LAST_NAME: MOLI*RE

ENTER THE DEPARTMENT ASSIGNMENT: SALES

 CTRAN: Translating One Character to Another

Using Functions 3-15

The request processes as:

1. The CRTFORM screen prompts you for an employee ID, first name, last name, and
department assignment. It requests that you substitute an asterisk (*) whenever the
accented letter È appears in a name.

2. Enter the following data:

EMPLOYEE ID: 999888777
FIRST_NAME: AD*LE
LAST_NAME: MOLI*RE
DEPARTMENT: SALES

3. The procedure searches the data source for the employee ID. If it does not find it, it
continues processing the request.

4. The CTRAN function converts the asterisks into È’s in both the first and last names
(ADÈLE MOLIÈRE).

***** NEW EMPLOYEE ENTRY SCREEN *****

ENTER EMPLOYEE'S ID:

ENTER EMPLOYEE'S FIRST AND LAST NAME
SUBSTITUTE *'S FOR ALL ACCENTED E CHARACTERS

FIRST_NAME: LAST_NAME:

ENTER THE DEPARTMENT ASSIGNMENT:

FIRST_NAME: ADÈLE LAST_NAME: MOLIÈRE

5. The procedure stores the data in the data source.

Character Functions

3-16 Information Builders

Example Inserting Commas With MODIFY
This MODIFY request adds records of new employees to the EMPLOYEE data source.
The PROMPT command prompts you for data one field at a time. The CTRAN function
enables you to enter commas in names without having to enclose the names in single
quotation marks. Instead of typing the comma, you type a semicolon, which is converted
by the CTRAN function into a comma. The equivalent EBCDIC decimal value for a
semicolon is 94; for a comma, 107.

The request is:
MODIFY FILE EMPLOYEE
PROMPT EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
MATCH EMP_ID
 ON MATCH REJECT
 ON NOMATCH COMPUTE
 LAST_NAME/A15 = CTRAN(15, LAST_NAME, 94, 107, 'A15');
 ON NOMATCH INCLUDE
DATA

A sample execution follows:
>
 EMPLOYEEFOCUS A ON 04/19/96 AT 16.07.29
 DATA FOR TRANSACTION 1

 EMP_ID =
224466880
 LAST_NAME =
BRADLEY; JR.
 FIRST_NAME =
JOHN
 DEPARTMENT =
MIS
 DATA FOR TRANSACTION 2

 EMP_ID =
end
 TRANSACTIONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0
 SEGMENTS: INPUT = 1 UPDATED = 0 DELETED = 0
>

 CTRFLD: Centering a Character String

Using Functions 3-17

The request processes as:

1. The request prompts you for an employee ID, last name, first name, and department
assignment. Enter the following data:

EMP_ID: 224466880
LAST_NAME: BRADLEY; JR.
FIRST_NAME: JOHN
DEPARTMENT: MIS

2. The request searches the data source for the ID 224466880. If it does not find the ID,
it continues processing the transaction.

3. The CTRAN function converts the semicolon in “BRADLEY; JR.” to a comma. The
last name is now “BRADLEY, JR.”

4. The request adds the transaction to the data source.

This request displays the semicolon converted to a comma:
TABLE FILE EMPLOYEE
PRINT EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
IF EMP_ID IS 224466880
END

EMP_ID LAST_NAME FIRST_NAME DEPARTMENT
 ------ --------- ---------- ----------
224466880 BRADLEY, JR. JOHN MIS

CTRFLD: Centering a Character String
Available Operating Systems: All

Available Languages: reporting, Maintain
The CTRFLD function centers a character string within a field. The number of leading
spaces is equal to or one less than the number of trailing spaces.

The CTRFLD function is useful for centering the contents of a field and its report
column, or a heading that consists only of an embedded field. HEADING CENTER
centers each field value including trailing spaces. To center the field value without the
trailing spaces, first center the value within the field using the CTRFLD function.

Limit:
Using CTRFLD in a styled report (StyleSheets feature) generally negates the effect of
CTRFLD unless the item is also styled as a centered element. Also, if you are using
CTRFLD on a platform for which the default font is proportional, either use a
non-proportional font, or issue SET STYLE=OFF before running the request.

Character Functions

3-18 Information Builders

Syntax How to Center a Character String
CTRFLD(string, length, outfield)

where:
string

Alphanumeric

Is the character string. This can be the string enclosed in single quotation marks, or
the name of the field that contains the string.

length

Integer

Is the length of string and outfield. This argument must be greater than 0. A length
less than 0 can cause unpredictable results.

outfield

Alphanumeric

Is the name of the field that contains the result, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Centering a Field
In this example, CTRFLD centers the LAST_NAME field, and stores the results in
CENTER_NAME.
SET STYLE=OFF

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
CENTER_NAME/A15 = CTRFLD(LAST_NAME, 15, 'A15');
WHERE DEPARTMENT EQ 'MIS'
END

The output is:
LAST_NAME CENTER_NAME
--------- -----------
SMITH SMITH
JONES JONES
MCCOY MCCOY
BLACKWOOD BLACKWOOD
GREENSPAN GREENSPAN
CROSS CROSS

 EDIT: Extracting or Adding Characters

Using Functions 3-19

EDIT: Extracting or Adding Characters
Available Operating Systems: All

Available Languages: reporting
The EDIT function extracts characters from or adds characters to an alphanumeric string.
Another way to extract a substring is to use the SUBSTR function. The differences are:

• The EDIT function can extract a substring from different parts of the parent string.
For example, it can extract the first two characters and the last two characters of a
string to form a single substring. Also, it can insert characters into a substring.

• The SUBSTR function can vary the position of the substring depending on the values
of other fields.

The EDIT function can also convert the format of a field. For information on converting a
field with EDIT, see Chapter 6, Format Conversion Functions.

Syntax How to Extract or Add Characters
EDIT(fieldname, 'mask');

where:
fieldname

Alphanumeric

Is the source field.
mask

Alphanumeric

Is a string, enclosed in single quotation marks. When EDIT encounters a 9 in the
mask, it copies the corresponding character from the source field to the new field.
When it encounters a dollar sign in the mask, EDIT ignores the corresponding
character in the source field. When it encounters any other character in the mask,
EDIT copies that character to the corresponding position in the new field.

The length of the mask, excluding any characters other than 9 and $, must be the
length of the source field.

Character Functions

3-20 Information Builders

Example Extracting and Adding a Character to a Field
In this example, EDIT extracts the first initial from the FIRST_NAME field, and stores
the result in the FIRST_INIT field. EDIT also adds dashed to the EMP_ID field, and
stores the result in the EMPIDEDIT field.
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
FIRST_INIT/A1 = EDIT(FIRST_NAME, '9$$$$$$$$$');
EMPIDEDIT/A11 = EDIT(EMP_ID, '999-99-9999');
WHERE DEPARTMENT EQ 'MIS'
END

The output is:
LAST_NAME FIRST_INIT EMPIDEDIT
--------- ---------- ---------
SMITH M 112-84-7612
JONES D 117-59-3129
MCCOY J 219-98-4371
BLACKWOOD R 326-17-9357
GREENSPAN M 543-72-9165
CROSS B 818-69-2173

GETTOK: Extracting a Substring (Token)
Available Operating Systems: All

Available Languages: reporting, Maintain
The GETTOK function divides a character string into substrings, called tokens, where a
specific character, called a delimiter, occurs in the string. It then returns one of the
tokens.

For example, suppose you want to extract the fourth word from a sentence. The function
divides the sentence into words using spaces as delimiters, then extracts the fourth word.
If the string is not divided by a delimiter, use the PARAG function for this purpose.

 GETTOK: Extracting a Substring (Token)

Using Functions 3-21

Syntax How to Extract a Substring (Token)
GETTOK(infield, inlen, token, 'delim', outlen, outfield)

where:
infield

Alphanumeric

Is the field containing the parent character string.
inlen

Integer

Is the length of the parent string. If this argument is less than or equal to 0, the
function returns spaces.

token

Integer

Is the number of the token to extract. If this argument is positive, the tokens are
counted from left to right. If this argument is negative, the tokens are counted from
right to left. For example -2 extracts the second token from the right. If this argument
is 0, the function returns spaces. Leading and trailing null tokens are ignored.

'delim'

Alphanumeric

Is the delimiter in the parent string enclosed in single quotation marks. If you specify
more than one character, only the first character is used.

Tip:
In Dialogue Manager, to prevent the conversion of a delimiter space character
(' ') to a double precision zero, include a non-numeric character after the space (for
example, ' %'). GETTOK uses only the first character (the space) as a delimiter, while
the extra character (%) prevents conversion to double precision.

outlen

Integer

Is the maximum size of the token. If this argument is less than or equal to 0, the
function returns spaces. If the token is longer than this argument, it is truncated; if it
is shorter, it is padded with trailing spaces.

outfield

Alphanumeric

Is the name of the field that contains the token, or the format of the output value
enclosed in single quotation marks. The delimiter is not included in the token.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Character Functions

3-22 Information Builders

Example Extracting a Token From a Field
In this example, GETTOK extracts the last token from ADDRESS_LN3 and stores the
result in LAST_TOKEN.
TABLE FILE EMPLOYEE
PRINT ADDRESS_LN3 AND COMPUTE
LAST_TOKEN/A10 = GETTOK(ADDRESS_LN3, 20, -1, ' ', 10, LAST_TOKEN) ;
AS 'LAST TOKEN,(ZIP CODE)'
WHERE TYPE EQ 'HSM'
END

The output is:
 LAST TOKEN
ADDRESS_LN3 (ZIP CODE)
----------- ----------
RUTHERFORD NJ 07073 07073
NEW YORK NY 10039 10039
FREEPORT NY 11520 11520
NEW YORK NY 10001 10001
FREEPORT NY 11520 11520
ROSELAND NJ 07068 07068
JERSEY CITY NJ 07300 07300
FLUSHING NY 11354 11354

LCWORD: Converting a String to Mixed Case
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The LCWORD function converts the letters in a string to mixed case. It converts every
alphanumeric character to lowercase except the first letter of each new word and the first
letter after a single or double quotation mark. For example, O’CONNOR is converted to
O’Connor and JACK’S to Jack’S. If LCWORD encounters a number in the string, it
treats it as an uppercase character and continues to convert the following alphabetic
characters to lowercase. The result of LCWORD is a word with an initial uppercase
character followed by lowercase characters.

 LCWORD: Converting a String to Mixed Case

Using Functions 3-23

Syntax How to Convert to Mixed Case
LCWORD(length, string, outfield)

where:
length

Integer

Is the length of the field to be converted.
string

Alphanumeric

Is the string to be converted. This can be the name of the field containing the string,
or the string enclosed in single quotation marks.

outfield

Alphanumeric

Is the name of the output field, or the format of the output value enclosed in single
quotation marks. The length must be at least the length of length.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Converting a String to Mixed Case
In the following, LCWORD converts the LAST_NAME field to mixed case and stores
the result in MIXED_CASE.
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
MIXED_CASE/A15 = LCWORD(15, LAST_NAME, MIXED_CASE) ;
WHERE DEPARTMENT EQ 'PRODUCTION'
END

The output is:
LAST_NAME MIXED_CASE
--------- ----------
STEVENS Stevens
SMITH Smith
BANNING Banning
IRVING Irving
ROMANS Romans
MCKNIGHT Mcknight

Character Functions

3-24 Information Builders

LJUST: Left-Justifying a String
Available Operating Systems: All

Available Languages: reporting, Maintain

The LJUST function left-justifies a character string within a field. All leading spaces
become trailing spaces.

LJUST will not have any visible effect in a report that uses StyleSheets (SET
STYLE=ON) unless you center the item.

Syntax How to Left-Justify a String
LJUST(length, string, outfield)

where:
length

Integer

Is the length of string and outfield.
string

Alphanumeric

Is the string to be justified. This can be the field that contains the string, or the string
enclosed in single quotation marks.

outfield

Alphanumeric

Is the name of the field to which the output is returned, or the format of the output
value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

 LOCASE: Converting Text to Lowercase

Using Functions 3-25

Example Left-Justifying a Formerly Numeric Field
In this example, FTOA converts CURR_SAL to an alphanumeric field called
SAL_STRING. LJUST then left-justifies the SAL_STRING field and stores the result in
LEFT_SAL.
SET STYLE=OFF

TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND COMPUTE
SAL_STRING/A12 = FTOA(CURR_SAL, '(D8.2M)', SAL_STRING);
LEFT_SAL/A12 = LJUST(12, SAL_STRING, LEFT_SAL);
BY LAST_NAME
WHERE DEPARTMENT EQ 'MIS'
END

The output is:
LAST_NAME FIRST_NAME SAL_STRING LEFT_SAL
--------- ---------- ---------- --------
BLACKWOOD ROSEMARIE $21,780.00 $21,780.00
CROSS BARBARA $27,062.00 $27,062.00
GREENSPAN MARY $9,000.00 $9,000.00
JONES DIANE $18,480.00 $18,480.00
MCCOY JOHN $18,480.00 $18,480.00
SMITH MARY $13,200.00 $13,200.00

LOCASE: Converting Text to Lowercase
Available Operating Systems: All

Available Languages: reporting, Maintain

The LOCASE function converts alphanumeric text to lowercase. This is useful for
converting input fields from FIDEL CRTFORMs and from non-FOCUS applications to
lowercase.

Syntax How to Convert Text to Lowercase
LOCASE(length, string, outfield)

where:
length

Integer

Is the length of string and outfield in characters. The length must be greater than 0,
and the same for both arguments; otherwise, an error occurs.

string

Alphanumeric

Is the string to be converted. This can be the field that contains the string, or the
string enclosed in single quotation marks.

Character Functions

3-26 Information Builders

outfield

Alphanumeric

Is the name of the field in which to store the result, or the format of the output value
enclosed in single quotation marks. The field name can be the same as string.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Converting a Field to Lowercase
In this example, LOCASE converts the LAST_NAME field to lowercase and stores the
result in LOWER_NAME.
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
LOWER_NAME/A15 = LOCASE(15, LAST_NAME, LOWER_NAME);
WHERE DEPARTMENT EQ 'MIS';
END

The output is:
LAST_NAME LOWER_NAME
--------- ----------
SMITH smith
JONES jones
MCCOY mccoy
BLACKWOOD blackwood
GREENSPAN greenspan
CROSS cross

 OVRLAY: Overlaying a Substring Within a String

Using Functions 3-27

OVRLAY: Overlaying a Substring Within a String
Available Operating Systems: All

Available Languages: reporting, Maintain

The OVRLAY function overlays a substring on another character string. When specified
in a MODIFY procedure, the function enables you to edit a part of an alphanumeric field
without replacing the field entirely.

Syntax How to Overlay a Substring
OVRLAY(string1, stringlen, string2, sublen, position, outfield)

where:
string

Alphanumeric

Is the character string into which you want to overlay characters.
stringlen

Integer

Is the length of string1 and outfield. If this argument is less than or equal to 0,
unpredictable results occur.

string2

Alphanumeric

Is the string you want to overlay into string1.
sublen

Integer

Is the length of string2. If this argument is less than or equal to 0, the function
returns spaces.

position

Integer

Is the position in the base string where the overlay is to begin. If this argument is less
than or equal to 0, the function returns spaces. If the argument is larger than
stringlen, the function returns the base string.

outfield

Alphanumeric

Is the name of the field to which the overlaid string is returned, or the format of the
output value enclosed in single quotation marks. If the overlaid string is longer than
the output field, the string is truncated to fit the field.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Character Functions

3-28 Information Builders

Example Replacing Characters in a String
In the following example, OVRLAY replaces the last three characters of EMP_ID with
CURR_JOBCODE to create a new security identification code, and stores the result in
NEW_ID.
TABLE FILE EMPLOYEE
PRINT EMP_ID AND CURR_JOBCODE AND COMPUTE
NEW_ID/A9 = OVRLAY(EMP_ID, 9, CURR_JOBCODE, 3, 7, NEW_ID);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS'
END

The output is:
LAST_NAME FIRST_NAME EMP_ID CURR_JOBCODE NEW_ID
--------- ---------- ------ ------------ ------
BLACKWOOD ROSEMARIE 326179357 B04 326179B04
CROSS BARBARA 818692173 A17 818692A17
GREENSPAN MARY 543729165 A07 543729A07
JONES DIANE 117593129 B03 117593B03
MCCOY JOHN 219984371 B02 219984B02
SMITH MARY 112847612 B14 112847B14

Example Replacing Characters in a String With MODIFY
This MODIFY procedure prompts for input using a CRTFORM screen and updates first
names in the EMPLOYEE data source. The CRTFORM LOWER option enables you to
update the names in lowercase, but the procedure ensures that the first letter of each name
is capitalized. The procedure is:
MODIFY FILE EMPLOYEE
CRTFORM LOWER
 "ENTER EMPLOYEE'S ID: <EMP_ID"
 "ENTER FIRST_NAME IN LOWER CASE: <FIRST_NAME"
MATCH EMP_ID
 ON NOMATCH REJECT
 ON MATCH COMPUTE
 F_UP/A1 = UPCASE (1, FIRST_NAME,'A1');
 FIRST_NAME/A10 = OVRLAY (FIRST_NAME, 10, F_UP, 1, 1, 'A10');
 ON MATCH TYPE "CHANGING FIRST NAME TO <FIRST_NAME "
 ON MATCH UPDATE FIRST_NAME
DATA
END

The COMPUTE command invokes two functions:

• The UPCASE function extracts the first letter and converts it to uppercase.

• The OVRLAY function replaces the present first letter in the name with the
uppercase initial.

A sample execution is:
ENTER EMPLOYEE'S ID: 071382660
ENTER FIRST_NAME IN LOWER CASE: alfred

 PARAG: Dividing Text Into Smaller Lines

Using Functions 3-29

The procedure processes as:

1. The procedure prompts you from a CRTFORM screen for an employee ID and a first
name. You type the following data and press the Enter key:
EMPLOYEE'S ID: 071382660
FIRST NAME: alfred

2. The procedure searches the data source for the ID 071382660. If it finds the ID, it
continues processing the transaction. In this case, the ID exists and belongs to Alfred
Stevens.

3. The UPCASE function extracts the letter a from alfred and converts it to the letter A.

4. The OVRLAY function overlays the letter A on alfred. The first name is now Alfred.
ENTER EMPLOYEE'S ID:
ENTER FIRST_NAME IN LOWER CASE:

CHANGING FIRST NAME TO Alfred

5. The procedure updates the first name in the data source.

6. When you exit the procedure with PF3, the FOCUS transaction message indicates
that one update occurred.
TRANSACTIONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0
SEGMENTS: INPUT = 0 UPDATED = 1 DELETED = 0

PARAG: Dividing Text Into Smaller Lines
Available Operating Systems: All

Available Languages: reporting, Maintain

The PARAG function divides lines of text into smaller lines by marking them off with a
delimiter character. The PARAG function scans a specific number of characters from the
beginning of the line and replaces the last space with a delimiter. It repeats this until
reaching the end of the line. Each group of characters marked off by the delimiter
becomes a subline. The GETTOK function can then place the sublines into different
fields. If the function does not find any spaces in the group it scans, it replaces the first
character after the group with the delimiter. Therefore, be sure that no word of text is
longer than the number of characters scanned by the function.

If the input lines of text are roughly equal in length, you can keep the sublines equal by
specifying a subline length that evenly divides into the length of the text lines. For
example, if you are dividing text lines 120 characters long, you can divide each of them
into two sublines of 60 characters long, three sublines of 40 characters long, and so on.
This enables you to print lines of text in paragraph form. However, if you divide the lines
evenly, you may create more sublines than you intend. For example, suppose you divide
120-character text lines into two lines of 60 characters maximum length. One line is
divided so that the first subline is 50 characters long and the second is 55. This leaves
room for a third subline 15 characters long. To correct this, insert a space (using weak
concatenation) at the beginning of the extra subline, then append this subline (using
strong concatenation) to the end of the one before it.

Character Functions

3-30 Information Builders

Syntax How to Divide Text Into Smaller Lines
PARAG(length, string, 'delim', subsize, outfield)

where:
length

Integer

Is the length of string and outfield.
string

Alphanumeric

Is the input string.
delim

Alphanumeric

Is the delimiter character enclosed in single quotation marks. Choose a character that
does not appear in the text.

subsize

Integer

Is the maximum length of each subline.
outfield

Alphanumeric

Is the name of the field to which the delimited text is returned, or the format of the
output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Dividing Text Into Smaller Lines
In the following example, PARAG divides ADDRESS_LN2 into smaller lines of not
more than ten characters, using a comma as the delimiter. It then stores the result in
PARA_ADDR.
TABLE FILE EMPLOYEE
PRINT ADDRESS_LN2 AND COMPUTE
PARA_ADDR/A20 = PARAG(20, ADDRESS_LN2, ',', 10, PARA_ADDR);
BY LAST_NAME
WHERE TYPE EQ 'HSM'
END

The output is:
LAST_NAME ADDRESS_LN2 PARA_ADDR
--------- ----------- ---------
BANNING APT 4C APT 4C ,
CROSS 147-15 NORTHERN BLD 147-15,NORTHERN,BLD
GREENSPAN 13 LINDEN AVE. 13 LINDEN,AVE.
IRVING 123 E 32 ST. 123 E 32,ST. ,
JONES 235 MURRAY HIL PKWY 235 MURRAY,HIL PKWY
MCKNIGHT 117 HARRISON AVE. 117,HARRISON,AVE.
ROMANS 271 PRESIDENT ST. 271,PRESIDENT,ST.
SMITH 136 E 161 ST. 136 E 161,ST.

 POSIT: Finding the Beginning of a Substring

Using Functions 3-31

POSIT: Finding the Beginning of a Substring
Available Operating Systems: All

Available Languages: reporting, Maintain

The POSIT function finds the starting position of a substring within a larger string. For
example, the beginning position of the substring DUCT in the string PRODUCTION is
position 4. If the substring is not in the parent string, the function returns the value 0.

Syntax How to Find the Beginning of a Substring
POSIT(parent, inlength, substring, sublength, outfield)

where:
parent

Alphanumeric

Is the field containing the parent character string.
inlength

Integer

Is the parent field length. If this argument is less than or equal to 0, the function
returns 0.

substring

Alphanumeric

Is the substring whose position you want to find. This can be the substring enclosed
in single quotation marks, or the field that contains the string.

sublength

Integer

Is the length of substring. If this argument is less than or equal to 0, or if it is greater
than the inlength argument, the function returns a 0.

outfield

Integer

Is the name of the field to which the position is returned, or the format of the output
value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Character Functions

3-32 Information Builders

Example Finding the Beginning of a String
In the following example, POSIT determines the position of the first capital letter I in
LAST_NAME, and saves the result in I_IN_NAME.
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
I_IN_NAME/I2 = POSIT(LAST_NAME, 15, 'I', 1, 'I2');
WHERE DEPARTMENT EQ 'PRODUCTION'
END

The output is:
LAST_NAME I_IN_NAME
--------- ---------
STEVENS 0
SMITH 3
BANNING 5
IRVING 1
ROMANS 0
MCKNIGHT 5

RJUST: Right-Justifying a String
Available Operating Systems: All

Available Languages: reporting, Maintain

The RJUST function right-justifies a character string within a field. All trailing spaces
become leading spaces. This is helpful when you display alphanumeric fields containing
numbers.

Note: RJUST will not have any visible effect in a report that uses StyleSheets (SET
STYLE=ON) unless you center the item. Also, if you using RJUST on a platform where
StyleSheets are turned on by default, issue SET STYLE=OFF before running the
request.

Syntax How to Right-Justify a String
RJUST(length, string, outfield)

where:
length

Integer

Is the length of string and outfield. Their lengths must be the same to avoid
justification problems.

string

Alphanumeric

Is the string to be justified. This can be the field that contains the string, or the string
enclosed in single quotation marks.

 SOUNDEX: Comparing Strings Phonetically

Using Functions 3-33

outfield

Alphanumeric

Is the name of the field to which the output is returned, or the format of the output
value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Right-Justifying a Field
In the following example, RJUST right-justifies LAST_NAME and stores the result in
RIGHT_NAME.
SET STYLE=OFF

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
RIGHT_NAME/A15 = RJUST(15, LAST_NAME, RIGHT_NAME);
WHERE DEPARTMENT EQ 'MIS'
END

The output is:
LAST_NAME RIGHT_NAME
--------- ----------
SMITH SMITH
JONES JONES
MCCOY MCCOY
BLACKWOOD BLACKWOOD
GREENSPAN GREENSPAN
CROSS CROSS

SOUNDEX: Comparing Strings Phonetically
Available Operating Systems: All

Available Languages: reporting, Maintain

The SOUNDEX function enables you to search for character strings phonetically without
knowing how they are spelled. It converts character strings to 4-character codes. The first
character must be the first character in the string. The last three characters represent the
next three significant sounds in the string.

To conduct a phonetic search, do the following:

1. Use the SOUNDEX function to translate data values from the field you are searching
for to their phonetic codes.

2. Use the SOUNDEX function to translate your best guess target string to a phonetic
code. Remember that the spelling of your target string need be only approximate;
however, the first letter must be correct.

3. Use WHERE or IF criteria to compare the temporary fields created in step 1 to the
temporary field created in Step 2.

Character Functions

3-34 Information Builders

Syntax How to Compare Strings Phonetically
SOUNDEX(inlength, string, outfield)

where:
inlength

A2

Is the length of the input character string. It can be a number enclosed in single
quotation marks, or a field containing the number. The number must be from 1 to 99;
a number larger than 99 will cause the function to return asterisks (*) as output.

string

Alphanumeric

Is the source of the input character string. It can be the character string itself
enclosed in single quotation marks, or a field or amper variable that contains the
string.

outfield

Alphanumeric

Is the name of the field to which the phonetic code is returned, or the format of the
output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Comparing Strings Phonetically
The following request creates three fields:

• The field PHON_NAME contains the phonetic code of the employee’s last name.

• The field PHON_COY contains the phonetic code of your guess, Micoy.

• The field PHON_MATCH contains YES if the phonetic code matches, NO if it does
not.

The WHERE criteria selects the last name that matches your best guess.
DEFINE FILE EMPLOYEE
PHON_NAME/A4 = SOUNDEX('15', LAST_NAME, PHON_NAME);
PHON_COY/A4 WITH LAST_NAME = SOUNDEX('15', 'MICOY', PHON_COY);
PHON_MATCH/A3 = IF PHON_NAME IS PHON_COY THEN 'YES' ELSE 'NO';
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME
IF PHON_MATCH IS 'YES'
END

The output is:
LAST_NAME

MCCOY

 SQUEEZ: Reducing Multiple Blanks to a Single Blank

Using Functions 3-35

SQUEEZ: Reducing Multiple Blanks to a Single Blank
Available Operating Systems: All

Available Languages: reporting, Maintain

The SQUEEZ function reduces multiple contiguous blank characters within a string to a
single blank character. The resulting string has the same length as the original string but it
is padded on the right with blanks.

Syntax How to Reduce Multiple Blanks to a Single Blank
SQUEEZ(length, string, outfield)

where:
length

Is a number or numeric field that specifies the length of the source and results fields.
string

Is an alphanumeric string or field from which the extra blank characters will be
removed.

outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Reducing Multiple Blanks to a Single Blank
In the following example, SQUEEZ reduces multiple blanks in the NAME field to a
single blank, and stores the result in a field with the format A30.
DEFINE FILE EMPLOYEE
NAME/A30 = FIRST_NAME | LAST_NAME;
END
TABLE FILE EMPLOYEE
PRINT NAME AND COMPUTE
SQNAME/A30 = SQUEEZ(30,NAME,’A30’);
WHERE DEPARTMENT EQ ‘MIS’
END

The output is:
NAME SQNAME
---- ------
MARY SMITH MARY SMITH
DIANE JONES DIANE JONES
JOHN MCCOY JOHN MCCOY
ROSEMARIE BLACKWOOD ROSEMARIE BLACKWOOD
MARY GREENSPAN MARY GREENSPAN
BARBARA CROSS BARBARA CROSS

Character Functions

3-36 Information Builders

STRIP: Removing a Character From a String
Available Operating Systems: All

Available Languages: reporting

The STRIP function removes all occurrences of a specific character from an input string.
The resulting string has the same length as the original string but is padded on the right
with blanks.

Syntax How to Remove a Character From an Input String
STRIP(length, string, char, outfield)

where:
length

Integer

Is a number or numeric field that specifies the length of string and outfield.
string

Alphanumeric

Is an alphanumeric string, or the field from which the character will be removed.
char

Alphanumeric

Is the character to be removed from the string. This can be an alphanumeric literal
enclosed in single quotation marks, or a field that contains the character. If it is a
field, the left-most character in the field will be used as the strip character.

Note: To remove single quotation marks, use two consecutive quotation marks. You
must then enclose this character combination in single quotation marks.

outfield

Alphanumeric

Is the field to which the substring is returned, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

 SUBSTR: Extracting a Substring

Using Functions 3-37

Example Removing All Occurrences of a Character From a String
In the following example, STRIP removes all occurrences of a period (.) from the
DIRECTOR field, and stores the result in a field with the format A17.
TABLE FILE MOVIES
PRINT DIRECTOR AND COMPUTE
SDIR/A17 = STRIP(17,DIRECTOR,’.’,’A17’);
WHERE CATEGORY EQ ‘COMEDY’
END

The output is:
DIRECTOR SDIR
-------- ----
ZEMECKIS R. ZEMECKIS R
ABRAHAMS J. ABRAHAMS J
ALLEN W. ALLEN W
HALLSTROM L. HALLSTROM L
MARSHALL P. MARSHALL P
BROOKS J.L. BROOKS JL

SUBSTR: Extracting a Substring
Available Operating Systems: All

Available Languages: reporting, Maintain

The SUBSTR function extracts a substring based on where it begins and its length in the
parent string. Another way to extract substrings is to use the EDIT function. The
differences are:

• The EDIT function can extract a substring from different parts of the parent string.
For example, it can extract the first two characters and the last two characters of a
string to form a single substring. Also, it can insert characters into a substring.

• The SUBSTR subroutine can vary the position of the substring depending on the
values of other fields.

Syntax How to Extract a Substring
SUBSTR(inlength, parent, start, end, sublength, outfield)

where:
inlength

Integer

Is the length of the parent string.
parent

Alphanumeric

Is the field containing the parent string, or the parent string enclosed in single
quotation marks.

Character Functions

3-38 Information Builders

start

Integer

Is the starting position of the substring in the parent string. If this argument is less
than 1, the function returns spaces.

end

Integer

Is the ending position of the substring. If this argument is less than start or greater
than inlength, the function returns spaces.

sublength

Integer

Is the length of the substring (normally end - start + 1). If sublength is longer than
end - start +1, the substring is padded with trailing spaces. If it is shorter, the
substring is truncated. This value should be the declared length of outfield. Only
sublength characters will be processed.

outfield

Alphanumeric

Is the field to which the substring is returned, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Extracting a String
In this example, POSIT determines the position of the first letter I in LAST_NAME and
saves the result in I_IN_NAME. SUBSTR then extracts the three characters beginning
with the letter I from I_IN_NAME, and saves the results in I_SUBSTR.
TABLE FILE EMPLOYEE
PRINT
COMPUTE
 I_IN_NAME/I2 = POSIT(LAST_NAME, 15, 'I', 1, 'I2');
 I_SUBSTR/A3 =
 SUBSTR(15, LAST_NAME, I_IN_NAME, I_IN_NAME+2, 3, I_SUBSTR);
BY LAST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION'
END

The output is:
LAST_NAME I_IN_NAME I_SUBSTR
--------- --------- --------
BANNING 5 ING
IRVING 1 IRV
MCKNIGHT 5 IGH
ROMANS 0
SMITH 3 ITH
STEVENS 0

Notice that since Stevens and Romans have no I in their names, SUBSTR extracts a blank
string.

 TRIM: Removing Leading and Trailing Occurrences

Using Functions 3-39

TRIM: Removing Leading and Trailing Occurrences
Available Operating Systems: All

Available Languages: reporting, Maintain

The TRIM function removes leading and/or trailing occurrences of a pattern within a
string.

Syntax How to Remove Leading and Trailing Occurrences
TRIM (trim_where, string, string_length, pattern, pattern_length,
outfield)

where:
trim_where

Alphanumeric

Is one of the following, which indicates where to remove the pattern:

'L' removes leading occurrences.

'T' removes trailing occurrences.

'B' removes both leading and trailing occurrences.
string

Alphanumeric

Is the source string.
string_length

Integer

Is the length of the source string.
pattern

Alphanumeric

Is the pattern to remove.
pattern_length

Integer

Is the length of the pattern.
outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Character Functions

3-40 Information Builders

Example Removing Leading Occurrences
The following request uses the TRIM function to remove leading occurrences of the
characters BR from director names in the MOVIES data source.
TABLE FILE MOVIES
PRINT DIRECTOR AND
COMPUTE
 TRIMDIR/A17 = TRIM('L',DIRECTOR,17,'BR',2,'A17');
 WHERE DIRECTOR CONTAINS 'BR'
END

The output is:
DIRECTOR TRIMDIR
-------- -------
ABRAHAMS J. ABRAHAMS J.
BROOKS R. OOKS R.
BROOKS J.L. OOKS J.L.

Example Removing Trailing Occurrences
The following request removes trailing occurrences of the characters ER from the TITLE
field in the MOVIES data source. In order to remove trailing non-blank characters,
trailing spaces must be removed first. The TITLE field has trailing spaces. Therefore, the
TRIM function does not remove the characters ER when creating field TRIMT. The
SHORT field does not have trailing spaces. Therefore, TRIM removes the trailing ER
characters when creating field TRIMS:
DEFINE FILE MOVIES
SHORT/A19 = SUBSTR(19, TITLE, 1, 19, 19, SHORT);
END
TABLE FILE MOVIES
PRINT TITLE IN 1 AS 'TITLE: '
 SHORT IN 40 AS 'SHORT: ' OVER
COMPUTE
 TRIMT/A39 = TRIM('T',TITLE,39,'ER',2,'A39'); IN 1 AS 'TRIMT: '
COMPUTE
 TRIMS/A19 = TRIM('T',SHORT,19,'ER',2,'A19'); IN 40 AS 'TRIMS: '
WHERE TITLE LIKE '%ER'
END

The output is:
TITLE: LEARN TO SKI BETTER SHORT: LEARN TO SKI BETTER
TRIMT: LEARN TO SKI BETTER TRIMS: LEARN TO SKI BETT
TITLE: FANNY AND ALEXANDER SHORT: FANNY AND ALEXANDER
TRIMT: FANNY AND ALEXANDER TRIMS: FANNY AND ALEXAND

 UPCASE: Converting Text to Uppercase

Using Functions 3-41

UPCASE: Converting Text to Uppercase
Available Operating Systems: All

Available Languages: reporting, Maintain

The UPCASE function converts a string of characters to uppercase. This is useful for
sorting on a field that contains both mixed case and uppercase values. Sorting on a mixed
case field produces incorrect results because the sorting sequence in EBCIDIC always
places lowercase letters before uppercase letters and the ASCII sorting sequence always
places uppercase letters before lowercase letters. To obtain correct results, define a new
field with all of the values in uppercase, and sort on that.

In FIDEL, CRTFORM LOWER retains the case of entries as they were typed. You can
use the UPCASE function to convert entries for particular fields to uppercase.

Syntax How to Convert Text to Uppercase
UPCASE(length, input, outfield)

where:
length

Integer

Is the length of input and outfield.
input

Alphanumeric

Is the mixed-case input string or field.
outfield

Alphanumeric

Is the uppercase output string or field, or the format of the output value enclosed in
single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Converting a Mixed Case Field to Uppercase
Suppose you are sorting on a field that contains both uppercase and mixed case values.
The following request defines a field called LAST_NAME_MIXED that contains both
uppercase and mixed case values:
DEFINE FILE EMPLOYEE
LAST_NAME_MIXED/A15=IF DEPARTMENT EQ 'MIS' THEN LAST_NAME ELSE
 LCWORD (15 , LAST_NAME, 'A15');
END

Suppose you execute a request that sorts by this field:
TABLE FILE EMPLOYEE
PRINT FIRST_NAME BY LAST_NAME_MIXED
WHERE CURR_JOBCODE EQ 'B02' OR 'A17' OR 'B04';
END

Character Functions

3-42 Information Builders

On an EBCDIC-based platform, the output is:
LAST_NAME_MIXED FIRST_NAME
--------------- ----------
Banning JOHN
BLACKWOOD ROSEMARIE
CROSS BARBARA
Mcknight ROGER
MCCOY JOHN
Romans ANTHONY

On an ASCII-based platform, the output is:
LAST_NAME_MIXED FIRST_NAME
--------------- ----------
BLACKWOOD ROSEMARIE
Banning JOHN
CROSS BARBARA
MCCOY JOHN
Mcknight ROGER
Romans ANTHONY

In the first example, Mcknight appears before MCCOY, since the EBCDIC sorting order
places lowercase letters before uppercase letters. In the second example, Blackwood
appears before Banning, since the ASCII sorting order places uppercase letters before
lowercase letters. In either case, this is not how you would expect your report to be
sorted.

The solution is to create a new field with all uppercase letters and sort using this field:
DEFINE FILE EMPLOYEE
LAST_NAME_MIXED/A15=IF DEPARTMENT EQ 'MIS' THEN LAST_NAME ELSE
 LCWORD (15, LAST_NAME, 'A15');
LAST_NAME_UPPER/A15=UPCASE (15, LAST_NAME_MIXED, 'A15') ;
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME_MIXED AND FIRST_NAME BY LAST_NAME_UPPER
WHERE CURR_JOBCODE EQ 'B02' OR 'A17' OR 'B04';
END

Now, when you execute the request, the names are sorted correctly:
LAST_NAME_UPPER LAST_NAME_MIXED FIRST_NAME
--------------- --------------- ----------
BANNING Banning JOHN
BLACKWOOD BLACKWOOD ROSEMARIE
CROSS CROSS BARBARA
MCCOY MCCOY JOHN
MCKNIGHT Mcknight ROGER
ROMANS Romans ANTHONY

If you do not want to see the field with all uppercase values, you can NOPRINT it.

 UPCASE: Converting Text to Uppercase

Using Functions 3-43

Example Converting a Mixed Case Field to Uppercase With MODIFY
Suppose your company decided to store employee names in mixed case and the
department assignments in uppercase in the EMPLOYEE data source.

To enter records of new employees, execute this MODIFY procedure:
MODIFY FILE EMPLOYEE
CRTFORM LOWER
 "ENTER EMPLOYEE'S ID : <EMP_ID"
 "ENTER LAST_NAME: <LAST_NAME FIRST_NAME: <FIRST_NAME"
 "TYPE THE NAME EXACTLY AS YOU SEE IT ON THE SHEET"
 " "
 "ENTER DEPARTMENT ASSIGNMENT: <DEPARTMENT"
MATCH EMP_ID
 ON MATCH REJECT
 ON NOMATCH COMPUTE
 DEPARTMENT = UPCASE (10, DEPARTMENT, 'A10');
 ON NOMATCH INCLUDE
 ON NOMATCH TYPE "DEPARTMENT VALUE CHANGED TO UPPERCASE: <DEPARTMENT"
DATA
END

A sample execution is as follows:
ENTER EMPLOYEE'S ID : 444555666
ENTER LAST_NAME: Cutter FIRST_NAME: Alan
TYPE THE NAME EXACTLY AS YOU SEE IT ON THE SHEET

ENTER DEPARTMENT ASSIGNMENT: sales

The procedure processes as:

1. The procedure prompts you for an employee ID, last name, first name, and
department on a CRTFORM screen. The CRTFORM LOWER option retains the
case of entries as they were typed.

2. You type the following data and press the Enter key:

EMPLOYEE'S ID: 444555666
LAST_NAME: Cutter
FIRST_NAME: Alan
DEPARTMENT ASSIGNMENT: sales

3. The procedure searches the data source for the ID 444555666. If it does not find the
ID, it continues processing the transaction.

4. The UPCASE function converts the DEPARTMENT entry sales to SALES.
ENTER EMPLOYEE'S ID :
ENTER LAST_NAME: FIRST_NAME:
TYPE THE NAME EXACTLY AS YOU SEE IT ON THE SHEET

ENTER DEPARTMENT ASSIGNMENT:

DEPARTMENT VALUE CHANGED TO UPPERCASE: SALES

Character Functions

3-44 Information Builders

5. The procedure adds the transaction to the data source.

6. When you exit the procedure with PF3, the FOCUS transaction message indicates
the number of transactions accepted or rejected.
TRANSACTIONS: TOTAL = 1 ACCEPTED= 1 REJECTED= 0

SEGMENTS: INPUT = 1 UPDATED = 0 DELETED = 0

Using Functions 4-1

CHAPTER 4

Data Source and Decoding Functions

Topics:
• Alphabetical List of Data Source and

Decoding Functions

Data source and decoding functions search for data source
records, retrieve data source records or values, and assign
values.

Data Source and Decoding Functions

4-2 Information Builders

DECODE: Decoding Values
Available Operating Systems: All

Available Languages: reporting, Maintain

The DECODE function assigns values based on the value of an input field.

This is helpful for giving a coded value in a field a more useful value. For example, the
field SEX may have the code F for female employees and M for male employees. This
allows the value for the field to be stored more efficiently (for example, one character
instead of six for female), and reduces the storage requirement for the file. The DECODE
function expands (decodes) these values.

You can use DECODE by typing values directly into the DECODE function or reading
values from a separate file.

Syntax How to Decode Values Supplied in the DECODE Function
DECODE fieldname(code1 result1 code2 result2...[ELSE default]);

where:
fieldname

Alphanumeric or Numeric

Is the name of the input field.
code

Any supported format

Is the code value DECODE is searching for; once it has found the specified value, it
will assign the corresponding result. If the value has embedded blanks, commas, or
other special characters, enclose the value in single quotation marks.

result

Any supported format

Is the value to be assigned when the field has the corresponding code. If the value
has embedded blanks or commas or contains a negative number, enclose the value in
single quotation marks.

default

Any supported format

Is the value to be assigned if the code is not found among the list of codes. If this
value is omitted, DECODE will assign a blank or zero for non-matching codes.

Note: You can use up to 40 lines to define the code and result pairs for any given
DECODE expression, or 39 if you also use an ELSE phrase. You can use either commas
or blanks to separate the code from the result, or one pair from another.

 DECODE: Decoding Values

Using Functions 4-3

Syntax How to Decode Values in a Separate File
DECODE fieldname(ddname [ELSE default]);

where:
fieldname

Alphanumeric or Numeric

Is the name of the input field.
ddname

Is a logical name or a shorthand name that points to the physical file name containing
the decoded values.

default

Any supported format

Is the value to be assigned if the code is not found among the list of codes. If this
default is omitted, DECODE will assign a blank or zero for non-matching codes.

Note:

• Each record in the separate file is expected to contain one pair of elements separated
by a comma or blanks.

• All data is interpreted in ASCII format on UNIX and Windows, or in EBCDIC
format on OS/390 or VM/CMS, and converted to the USAGE formats of the
DECODE pairs.

• Leading and trailing blanks are ignored.

• The remainder of each record is ignored and can be used for comments or other data.
This convention is followed in all cases, except when the file name is HOLD. In that
case the file is presumed to have been created by the FOCUS HOLD command,
which writes fields in their internal format, and the DECODE pairs are interpreted
accordingly. In this case, extraneous data in the record is ignored.

• If each record in the file consists of only one element, this element is interpreted as
the code, and the result becomes either a blank or zero, as needed.

This makes it possible to use the file to hold screening literals referenced in the
screening condition
IF field IS (filename)

and as a file of literals for an IF criteria specified in a computational expression. For
example:
TAKE = DECODE SELECT (filename ELSE 1);
VALUE = IF TAKE IS 0 THEN… ELSE…;

TAKE will be 0 for SELECT values found in the literal file and 1 in all other cases.
The VALUE computation is carried out as if the expression had been:
IF SELECT (filename) THEN… ELSE…;

• When using DECODE with a file, you can have up to 32,767 characters in the file.

Data Source and Decoding Functions

4-4 Information Builders

Example Decoding Values Supplied in the DECODE Function
In the following example, EDIT extracts the first character of the CURR_JOBCODE
field, then DECODE replaces these values with either ADMINISTRATIVE or DATA
PROCESSING.
TABLE FILE EMPLOYEE

PRINT CURR_JOBCODE AND COMPUTE
DEPX_CODE/A1 = EDIT(CURR_JOBCODE,'9$$') ; NOPRINT AND COMPUTE
JOB_CATEGORY/A15 = DECODE DEPX_CODE(A 'ADMINISTRATIVE' B 'DATA PROCESSING') ;
BY LAST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:
LAST_NAME CURR_JOBCODE JOB_CATEGORY
--------- ------------ ------------
BLACKWOOD B04 DATA PROCESSING
CROSS A17 ADMINISTRATIVE
GREENSPAN A07 ADMINISTRATIVE
JONES B03 DATA PROCESSING
MCCOY B02 DATA PROCESSING
SMITH B14 DATA PROCESSING

Example Reading DECODE Values From a File
The following example has two parts. The first part creates a file with a list of the
employee IDs for the employees who have taken classes. The second part reads this file
and assigns 0 to those employees who have taken classes and 1 to those employees who
have not. (Notice that the HOLD file contains only one column of values; therefore
DECODE assigns the value 0 to an employee whose EMP_ID appears in the file and 1
when EMP_ID does not appear in the file.)
TABLE FILE EDUCFILE
PRINT EMP_ID
ON TABLE HOLD
END

TABLE FILE EMPLOYEE
PRINT EMP_ID AND LAST_NAME AND FIRST_NAME AND
COMPUTE NOT_IN_LIST/I1 = DECODE EMP_ID(HOLD ELSE 1);
WHERE DEPARTMENT EQ 'MIS';
END

The output is:
EMP_ID LAST_NAME FIRST_NAME NOT_IN_LIST
------ --------- ---------- -----------
112847612 SMITH MARY 0
117593129 JONES DIANE 0
219984371 MCCOY JOHN 1
326179357 BLACKWOOD ROSEMARIE 0
543729165 GREENSPAN MARY 1
818692173 CROSS BARBARA 0

 FIND: Verifying the Existence of an Indexed Field

Using Functions 4-5

FIND: Verifying the Existence of an Indexed Field
Available Operating Systems: All

Available Languages: MODIFY, Maintain

The FIND function verifies if an incoming data value is in an indexed data source field,
whether the field is in the data source you are modifying, or if it is in another data source.
The function sets a temporary field to a non-zero value if the incoming value is in the
data source field, and to 0 if it is not. A value greater than zero confirms the presence of
the data value, not the number of instances in the data source field.

The FIND function can also be used in a VALIDATE command to test if a transaction
field value exists in another FOCUS data source. If the field value is not in that data
source, the function returns a value of 0, causing the validation to fail and the request to
reject the transaction.

You can use any number of FIND functions in a COMPUTE or VALIDATE command.
However, more FIND functions increase processing time and require more buffer space
in memory.

Limit:
The FIND function does not work on files with different DBA passwords.

Syntax How to Verify the Existence of an Indexed Field
field = FIND(fieldname [AS dbfield] IN file;

where:
field

Is the name of the temporary field to which the result is returned.
fieldname

Is the full field name of the incoming field being tested.
AS dbfield

Is the full field name of the data source field containing values to be compared with
the incoming data field. This field must be indexed. If the incoming field and the
data source field have the same name, you can omit this phrase.

file

Is the name of the data source.

Note: There is no space between FIND and the left parenthesis.

Data Source and Decoding Functions

4-6 Information Builders

Example Verifying the Existence of an Indexed Field in Another File
The following tests if each employee ID entered is also in the EDUCFILE data source. It
then displays a message informing you whether it found the ID in the data source.
MODIFY FILE EMPLOYEE
PROMPT EMP_ID
COMPUTE
 EDTEST = FIND(EMP_ID IN EDUCFILE);
 MSG/A40 = IF EDTEST NE 0 THEN
 'STUDENT LISTED IN EDUCATION FILE' ELSE
 'STUDENT NOT LISTED IN EDUCATION FILE';
MATCH EMP_ID
 ON NOMATCH TYPE "<MSG"
 ON MATCH TYPE "<MSG"
DATA

Example Using the FIND Function in a VALIDATE Command
The following updates the number of hours employees spent in class. It rejects employees
not listed in the EDUCFILE data source, which records class attendance.

This VALIDATE command will discard any incoming EMP_ID value not found in the
EDUCFILE data source.
MODIFY FILE EMPLOYEE
PROMPT EMP_ID ED_HRS
VALIDATE
 EDTEST = FIND(EMP_ID IN EDUCFILE);
MATCH EMP_ID
 ON NOMATCH REJECT
 ON MATCH UPDATE ED_HRS
DATA

 LAST: Retrieving the Preceding Value

Using Functions 4-7

LAST: Retrieving the Preceding Value
Available Operating Systems: All

Available Languages: reporting

The LAST function retrieves the preceding value selected for a field.

The effect of the keyword LAST depends on whether it appears in a DEFINE or
COMPUTE.

• In a DEFINE command, the LAST value is the previous record retrieved from the
file before sorting takes place.

• In a COMPUTE command, the LAST value is the record in the previous line in the
report.

Limit:
LAST cannot be used with the -SET command in Dialogue Manager.

Syntax How to Retrieve the Preceding Value
LAST fieldname

where:
fieldname

Alphanumeric or Numeric

Is the field name.

Data Source and Decoding Functions

4-8 Information Builders

Example Retrieving the Preceding Value
In the following example, LAST retrieves the previous value of the DEPARTMENT field
to determine whether to restart the running total of salaries by department.
TABLE FILE EMPLOYEE
PRINT LAST_NAME CURR_SAL AND COMPUTE
RUN_TOT/D12.2M = IF DEPARTMENT EQ LAST DEPARTMENT THEN
 (RUN_TOT + CURR_SAL) ELSE CURR_SAL ;
AS 'RUNNING,TOTAL,SALARY'
BY DEPARTMENT SKIP-LINE
END

The output is:
 RUNNING
 TOTAL
DEPARTMENT LAST_NAME CURR_SAL SALARY
---------- --------- -------- -------

MIS SMITH $13,200.00 $13,200.00
 JONES $18,480.00 $31,680.00
 MCCOY $18,480.00 $50,160.00
 BLACKWOOD $21,780.00 $71,940.00
 GREENSPAN $9,000.00 $80,940.00
 CROSS $27,062.00 $108,002.00

PRODUCTION STEVENS $11,000.00 $11,000.00
 SMITH $9,500.00 $20,500.00
 BANNING $29,700.00 $50,200.00
 IRVING $26,862.00 $77,062.00
 ROMANS $21,120.00 $98,182.00
 MCKNIGHT $16,100.00 $114,282.00

 LOOKUP: Retrieving a Value From a Cross-Referenced File

Using Functions 4-9

LOOKUP: Retrieving a Value From a
Cross-Referenced File

Available Operating Systems: All

Available Languages: MODIFY

The LOOKUP function retrieves data values from cross-referenced files in a MODIFY
request. You can retrieve data from a file cross-referenced statically in the Master File or
a file joined dynamically by the JOIN command. The LOOKUP function is necessary
because unlike TABLE requests, MODIFY requests cannot read cross-referenced files
freely. The LOOKUP function allows a request to use the data in computations and in
messages, but not modify a cross-referenced file; to modify more than one file in one
request, use the COMBINE command or the Maintain facility.

The LOOKUP function can read cross-referenced segments that are linked directly to a
segment in the host data source (the host segment). This means that the cross-referenced
segments must have segment types of KU, KM, DKU, or DKM (but not KL or KLU) or
contain the cross-referenced field specified by the JOIN command. Because LOOKUP
retrieves a single cross-referenced value, it is best used with unique cross-referenced
segments.

The cross-referenced segment contains two fields which the LOOKUP function uses:

• The field containing the values you want. Alternatively, you can retrieve all of the
fields in the segment at one time. The field, or your decision to retrieve all the
segment’s fields, is specified in the LOOKUP function.

For example, this LOOKUP function retrieves a single value from the
DATE_ATTEND field:
RTN = LOOKUP(DATE_ATTEND);

• The cross-referenced field. This field shares values with a field in the host segment
called the host field. These two fields link the host segment to the cross-referenced
segment. The LOOKUP function uses the cross-referenced field, which is indexed,
to locate a specific segment instance.

When using the LOOKUP function, the MODIFY request reads a transaction value for
the host field. The LOOKUP function then searches the cross-referenced segment for an
instance containing this value in the cross-referenced field:

• If there are no instances of the value, the function sets a return variable to 0. If you
use the field specified by the LOOKUP function in the request, the field assumes a
value of blank if alphanumeric and 0 if numeric.

• If there are instances of the value, the function sets the return variable to one and
retrieves the value of the specified field from the first instance it finds. There can be
more than one if the cross-referenced segment type is KM, DKM, or if you specified
the ALL keyword in the JOIN command

Data Source and Decoding Functions

4-10 Information Builders

Syntax How to Read Cross-Referenced FOCUS Files
rcode = LOOKUP(field)

where:
rcode

Is a variable you specify to receive a return code value. The value returned is 1 if the
LOOKUP function can locate a cross-referenced segment instance, 0 if the function
cannot.

field

Is the name of the field that you want to retrieve in the cross-referenced file. If the
field name also exists in the host file, you must qualify it here.

Note: No spaces are permitted between LOOKUP and the left parenthesis.

Example Reading Cross-Referenced FOCUS Files
Suppose you wish to update the amount of classroom hours employees have spent.
Because of a new system of accounting, employees taking classes after January 1, 1985
are to be credited with 10% more classroom hours than their records indicate.

The employee IDs (EMP_ID) and classroom hours (ED_HRS) are located in the host
segment. The class dates (DATE_ATTEND) are located in the cross-referenced segment.
The shared field is the employee ID field.

The file structure is shown in this diagram:

EMP_ID
ED_HRS

BANK_NAME DAT_INC EMP_ID
DATE_ATTEND TYPE PAY_DATE

COURSE_CODE
COURSE_NAME DED_CODE

 LOOKUP: Retrieving a Value From a Cross-Referenced File

Using Functions 4-11

The request is:
MODIFY FILE EMPLOYEE
PROMPT EMP_ID ED_HRS
COMPUTE
 EDTEST = LOOKUP(DATE_ATTEND);
 COMPUTE
 ED_HRS = IF DATE_ATTEND GE 820101 THEN ED_HRS * 1.1
 ELSE ED_HRS;
MATCH EMP_ID
 ON MATCH UPDATE ED_HRS
 ON NOMATCH REJECT
DATA

A sample execution of this request might go as follows:

1. The request prompts you for an employee ID and number of class hours. You enter
the ID 117593129 and 10 class hours.

2. The LOOKUP function locates the first instance in the cross-referenced segment
containing the employee ID 117593129. Since the instance exists, the function
returns a 1 to the EDTEST variable. This instance lists the class date as 821028
(October 28, 1982).

3. The LOOKUP function retrieves the value 821028 for the DATE_ATTEND field.

4. The COMPUTE statement tests the value of the DATE_ATTEND field. Since
October 28, 1982 is after January 1, 1982, the statement increases the incoming
ED_HRS value from 10 to 11 hours.

5. The request updates the classroom hours for employee 117593129 using the new
ED_HRS value.

Data Source and Decoding Functions

4-12 Information Builders

Example Using a Data Source Value in a Segment to Search a File
You may use a data source value in a specific host segment instance to search the
cross-referenced segment. To do this, prepare the request this way:

• In the MATCH statement that selects the host segment instance, activate the host
field. This can be done with the ACTIVATE phrase.

• In the same MATCH statement, place the LOOKUP function after the ACTIVATE
phrase.

This request displays the employee IDs, dates of salary raises, employee names, and the
position each employee held after the raise was granted:

• The employee IDs and names (EMP_ID) are in the root segment.

• The date of raise (DAT_INC) is in the descendant host segment.

• The job titles are in the cross-referenced segment.

• The shared field is JOBCODE. You never enter any job codes; the values are all
stored in the data source.

The request is:
MODIFY FILE EMPLOYEE
PROMPT EMP_ID DAT_INC
MATCH EMP_ID
 ON NOMATCH REJECT
 ON MATCH CONTINUE
MATCH DAT_INC
 ON NOMATCH REJECT
 ON MATCH ACTIVATE JOBCODE
 ON MATCH COMPUTE
 RTN = LOOKUP(JOB_DESC);
 ON MATCH TYPE
 "EMPLOYEE ID: <EMP_ID"
 "DATE INCREASE: <DAT_INC"
 "NAME: <D.FIRST_NAME <D.LAST_NAME"
 "POSITION: <JOB_DESC"
DATA

A sample execution might execute as follows:

1. The request prompts you for an employee ID and date of pay raise. You enter
employee ID 071382660 and date of raise 820101 (January 1, 1982).

2. The request locates the instance containing the ID 071382660, then locates the child
instance containing the date of raise 820101.

3. This child instance contains the job code A07. The ACTIVATE statement activates
this value, making it available to the LOOKUP function.

 LOOKUP: Retrieving a Value From a Cross-Referenced File

Using Functions 4-13

4. The LOOKUP function locates the job code A07 in the cross-referenced segment. It
returns a 1 into the RTN variable and retrieves the corresponding job description of
SECRETARY.

5. The request displays the values using a TYPE statement:
EMPLOYEE ID: 071382660
DATE INCREASE: 82/01/01
NAME: ALFRED STEVENS
POSITION: SECRETARY

Note: You may also need to activate the host field if you are using the LOOKUP function
within a NEXT statement. This request, similar to the previous one except for the NEXT
statement, displays the latest position held by a particular employee.
MODIFY FILE EMPLOYEE
PROMPT EMP_ID
MATCH EMP_ID
 ON NOMATCH REJECT
 ON MATCH CONTINUE
NEXT DAT_INC
 ON NONEXT REJECT
 ON NEXT ACTIVATE JOBCODE
 ON NEXT COMPUTE
 RTN = LOOKUP(JOB_DESC);
 ON MATCH TYPE
 "EMPLOYEE ID: <EMP_ID"
 "DATE OF POSITION: <DAT_INC"
 "NAME: <D.FIRST_NAME <D.LAST_NAME"
 "POSITION: <JOB_DESC"
DATA

Data Source and Decoding Functions

4-14 Information Builders

Example Using the LOOKUP Function in a VALIDATE Command
When you use the LOOKUP function, you may want to reject transactions containing
values for which there is no corresponding instance in the cross-reference segment. To do
this, place the function in a VALIDATE statement. If the function cannot locate the
instance in the cross-referenced segment, it sets the value of the return variable to 0. This
causes the request to reject the transaction.

The following request updates an employee’s classroom hours (ED_HRS). If the
employee attended classes on or after January 1, 1982, the request increases the number
of classroom hours by 10%. The classroom attendance dates are stored in a
cross-referenced segment (field DATE_ATTEND). The shared field is the employee ID.

The request is as follows:
MODIFY FIELD EMPLOYEE
PROMPT EMP_ID ED_HRS
VALIDATE
 TEST_DATE = LOOKUP(DATE_ATTEND):
COMPUTE
 ED_HRS = IF DATE_ATTEND GE 820101 THEN ED_HRS * 1.1
 ELSE ED_HRS;
MATCH EMP_ID
 ON MATCH UPDATE ED_HRS
 ON NOMATCH REJECT
DATA

If the employee is not recorded in the cross-referenced segment, then the employee has
never attended a class. This means that a transaction recording the employee’s classroom
hours is an error and should be rejected.

This is the purpose of the LOOKUP function in the VALIDATE statement. If the
function cannot locate an employee’s record in the cross-referenced segment, it returns a
0 to the TEST_DATE field. This causes the request to reject the transaction.

 LOOKUP: Retrieving a Value From a Cross-Referenced File

Using Functions 4-15

Using the Extended LOOKUP Function
If the function cannot locate a value of the host field in the cross-referenced segment, you
may specify that the LOOKUP function locates the next highest or lowest
cross-referenced field value in the cross-referenced segment by using an extended syntax.

To use this LOOKUP feature, the index must have been created on FOCUS Release 4.5
or later with the INDEX parameter set to NEW (the binary tree scheme). To determine
what type of index your file uses, enter the ? FDT command.

Note that fields retrieved by the LOOKUP function do not require the D. prefix to be
displayed in TYPE statements. FOCUS treats the field values as transaction values that
are not active.

Syntax How to Use the Extended LOOKUP Function
COMPUTE
rcode = LOOKUP(field action)

where:
rcode

Is a variable you specify to receive a return code value. (The value the variable
receives depends on the outcome of the function below.)

field

Is the name of the field you want to use in MODIFY computations. If the field name
also exists in the host file, you must qualify it here.

action

Specifies the action the request takes if there is no cross-referenced segment instance
corresponding to the host field value. Valid actions are the following:

EQ causes the LOOKUP function to take no further action if an exact match is not
found. If a match is found, the value of rcode is set to 1; otherwise, it is set to 0. This
is the default.

GE causes the LOOKUP function to locate the instance with the next highest value of
the cross- referenced field. The value of rcode is set to 2.

LE causes the LOOKUP function to locate the instance with the next lowest value of
the indexed field. The value of rcode is set to -2.

Note that there can be no space between LOOKUP and the left parenthesis.

The following table summarizes the value of rcode, depending on which instance the
LOOKUP function locates:

Value Action

1 Exact cross-referenced value located

2 Next highest cross-referenced value located

-2 Next lowest cross-referenced value located

0 Cross-referenced field value not located

Using Functions 5-1

CHAPTER 5

Date and Time Functions

Topics:
• Using Standard Date and Time

Functions

• Using Legacy Date Functions

Date and time functions manipulate date and time values. There
are two types of date and time functions:

• Standard date and time functions for use with non-legacy
dates. For details see Using Standard Date and Time
Functions on page 5-2.

• Legacy date functions for use with legacy dates. For more
information see Using Legacy Date Functions on page
5-32.

Note: If you are have dates in alphanumeric or numeric fields
that contain date display options, you must use legacy date
functions.

Date and Time Functions

5-2 Information Builders

Using Standard Date and Time Functions
When using standard date and time functions, you need to understand the settings that
alter the behavior of these functions, as well as what formats are acceptable and how to
supply values in these formats.

You can affect the behavior of date and time functions in the following ways:

• Define which days of the week are work days and which are not. Then, when you
use a date function, dates that are not work days are ignored. For details see Setting
Business Days on page 5-3.

• Determine whether to display leading zeros when a date function in Dialogue
Manager returns a date with leading zeros. For details see Enabling Leading Zeros
For Date and Time Functions in Dialogue Manager on page 5-5.

Reference Component Names and Values for Use With Date-Time
Functions
The following component names and values are supported as arguments for the date-time
functions that require you to specify a component name as an argument:

Component Name Valid Values
year 0001-9999
quarter 1-4
month 1-12
day-of-year 1-366

day or day-of-month 1-31 (The two names for the component are equivalent.)
week 1-53
weekday 1-7 (Sunday-Saturday)
hour 0-23
minute 0-59
second 0-59
millisecond 0-999
microsecond 0-999999

Notes:

• In those arguments that give you a choice of 8 or 10 characters, use 8 for processing
values without microseconds and 10 when the field value includes microseconds.

• The last argument is always a USAGE format that indicates the data type returned by
the function. The type may be A (alpha), I (integer), D (double precision), DATE
(smart date), or H (date-time).

 Using Standard Date and Time Functions

Using Functions 5-3

Specifying Work Days
You can determine which days are work days and which are not. Work days affect the
DATEADD, DATEDIF, and DATEMOV functions. You can specify work days in the
following ways:

• Specifying business days. For details see Setting Business Days on page 5-3.

• Specifying holidays. For details see Setting Holidays on page 5-4.

Example Setting Business Days
Business days are traditionally Monday through Friday, but not every business has this
schedule. You can determine which days are considered business days and which days
are not. For example, if your company does business on Sunday, Tuesday, Wednesday,
Friday and Saturday, you can tailor business day units to reflect that schedule.

Then when you use DATEADD, DATEDIF, or DATEMOV, these functions ignore dates
that are not business days.

Syntax How to Set Business Days
SET BUSDAYS = smtwtfs

where:
smtwtfs

Is the seven-character list of days that represents your business week. The list has a
position for each day from Sunday to Saturday.

• If you want a day of the week to be a business day, enter the first letter of that
day in that day’s position.

• If you want a day of the week not to be a business day, enter an underscore (_)
in that day’s position.

If a letter is not in its correct position, or if you replace a letter with a character other
than an underscore, you receive an error message.

Example Setting Business Days to Reflect Your Work Week
The following designates work days as Sunday, Tuesday, Wednesday, Friday, and
Saturday:
SET BUSDAYS = S_TW_FS

Date and Time Functions

5-4 Information Builders

Example Setting Holidays
You can specify a list of dates that are designated as holidays in your company. These
dates are excluded when using functions that perform calculations based on working
days. For example, if Thursday in a given week is designated as a holiday, the next
working day after Wednesday is Friday.

In order to define a list of holidays, you must:

1. Create a holiday file. You create a holiday file in a text editor.

2. Select the holiday file by issuing the SET command with the HDAY parameter in a
report request.

Reference Rules for Creating a Holiday File
The following guidelines must be followed in order for the holiday file to work:

• Dates must be in YYMD format.

• Dates must be listed in chronological order.

• Each date must be on its own line.

• An optional description of the holiday may be included, separated from the date by a
space.

• Each year for which data exists must be represented in the holiday file. Calling a date
function with a date value outside the range of the holidays file returns a zero on
business day requests.

Procedure How to Create a Holiday File
1. In a text editor, create a list of dates designated as holidays. For details on this file,

see Rules for Creating a Holiday File on page 5-3.

2. Save the file:

• In OS/390 this file should be a member in ERRORs called HDAYxxxx.

• In CMS the list should be HDAYxxxx ERRORS.

where:
xxxx

 Is a string of text four characters long.

Example Creating a Holiday File
The following file establishes holidays:
19910325 TEST HOLIDAY
19911225 CHRISTMAS

 Using Standard Date and Time Functions

Using Functions 5-5

Syntax How to Select the Holiday File
SET HDAY = xxxx

where:
xxxx

Is the part of the name of the holiday file after HDAY. This string must be four
characters long.

Example Using a Holiday File
The following is the HDAYTEST file and establishes holidays:
19910325 TEST HOLIDAY
19911225 CHRISTMAS

The following request uses the HDAYTEST file in its calculations:
SET BUSDAYS = SMTWTFS
SET HDAY = TEST
TABLE FILE MOVIES
PRINT TITLE RELDATE
COMPUTE NEXTDATE/YMD = DATEADD(RELDATE, 'BD', 1);
WHERE RELDATE GE '19910101'
END

Syntax How to View the Current Setting of HDAY
? SET HDAY

Enabling Leading Zeros For Date and Time Functions in Dialogue
Manager

If you use a date and time function in Dialogue Manager that returns a numeric integer
format, Dialogue Manager truncates any leading zeros. For example, if your function
returns the value 000101 (indicating January 1, 2000), Dialogue Manager will truncate
the leading zeros and use 101, producing an incorrect date. To avoid this problem, you
can use the LEADZERO parameter.

Syntax How to Set the Display of Leading Zeros
SET LEADZERO = {ON|OFF}

where:
ON

Allows the display of leading zeros.
OFF

Truncates leading zeros. This is the default.

Date and Time Functions

5-6 Information Builders

Example Displaying Leading Zeros
The following request uses the AYM function to add one month to the input date of
December 1999.
-SET &IN = '9912';
-SET &OUT = AYM(&IN, 1, 'I4');
-TYPE &OUT

Using the default setting, this yields:
1

This represents the date of January 2000 incorrectly. Modifying the request by adding the
LEADZERO parameter
SET LEADZERO = ON
-SET &IN = '9912';
-SET &OUT = AYM(&IN, 1, 'I4');
-TYPE &OUT

results in the following:
0001

This correctly indicates January 2000.

Note: LEADZERO only supports expressions that make a direct call to a function.
Expressions that have nesting or other mathematical functions truncate leading zeros. For
example
-SET &OUT = AYM(&IN, 1, 'I4')/100;

will always truncate leading zeros.

DATEADD: Adding or Subtracting a Date Unit to or From a Date
Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The DATEADD function adds a unit to or subtracts a unit from a date format. A unit can
be any of the following:

• Year.

• Month. If your calculation using the month unit creates an invalid date, DATEADD
corrects it by using the last day of the month. For example, adding one month to
October 31 yields November 30, not November 31 since November has 30 days.

• Day.

• Weekday. When using the weekday unit, DATEADD does not count Saturday and
Sunday. For example, if you add one day to a Friday, the result is Monday.

• Business day. When using the business day unit, DATEADD uses the BUSDAYS
parameter setting and holiday file to determine which days are working days and
disregards the rest. This means that if Monday is not a working day, then one
business day past a Sunday is Tuesday. See Setting Business Days on page 5-3 for
more information.

 Using Standard Date and Time Functions

Using Functions 5-7

The DATEADD function cannot be used with Dialogue Manager. DATEADD requires
dates to be in date format; Dialogue Manager interprets a date as alphanumeric or
numeric.

Note: You add or subtract non day-based dates (for example YM, YQ) directly without
using DATEADD.

Syntax How to Add or Subtract a Date Unit to or From a Date
DATEADD(date, 'unit', #units)

where:
date

Date

Is any day-based new date, for example, YYMD, MDY, or JUL.
unit

Alphanumeric

Can be one of the following:

Y indicates a year unit.

M indicates a month unit.

D indicates a day unit.

WD indicates a weekday unit.

BD indicates a business day unit.
#units

Integer

Is the number of date units you wish to add to or subtract from date. If this number is
not a whole unit, it is rounded down to the next largest integer.

Example Rounding With DATEADD
The number of units passed to DATEADD is always a whole unit. For example
DATEADD(DATE, 'M', 1.999)

adds one month because the number of units is less than two.

Example Using Weekday Units
If you use weekday units and use a Saturday or Sunday as your date, DATEADD changes
the day to Monday. The functions
DATEADD(Saturday, 'WD', 1)

and
DATEADD(Sunday, 'WD', 1)

both yield Tuesday as a result because Saturday and Sunday are not business days, so
DATEADD begins with Monday and adds one, yielding Tuesday.

Date and Time Functions

5-8 Information Builders

Example Adding Days to a Date
In this example, three weekdays are added to HIRE_DATE. DATECVT converts
HIRE_DATE to YYMD format and stores the result in NEW_DATE. DATEADD then
adds three weekdays to NEW_DATE.
TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND HIRE_DATE AND COMPUTE
NEW_DATE/YYMD=DATECVT(HIRE_DATE, 'I6YMD', 'YYMD');
HIRE_DATE_PLUS_THREE/YYMD=DATEADD(NEW_DATE, 'WD', 3);
BY LAST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:
LAST_NAME FIRST_NAME HIRE_DATE NEW_DATE HIRE_DATE_PLUS_THREE
--------- ---------- --------- -------- --------------------
BLACKWOOD ROSEMARIE 82/04/01 1982/04/01 1982/04/06
CROSS BARBARA 81/11/02 1981/11/02 1981/11/05
GREENSPAN MARY 82/04/01 1982/04/01 1982/04/06
JONES DIANE 82/05/01 1982/05/01 1982/05/06
MCCOY JOHN 81/07/01 1981/07/01 1981/07/06
SMITH MARY 81/07/01 1981/07/01 1981/07/06

Note: In some cases, DATEADD added more than three days, because otherwise
HIRE_DATE_PLUS_THREE would have been on a weekend.

Example Determining if a Date is a Business Day
In the following example, DATEADD determines which values in the TRANSDATE
field of the VIDEOTRK data source do not represent business days.

DATEADD adds zero days to TRANSDATE using the business day unit. If
TRANSDATE does not represent a business day, DATEADD returns the next business
day, which is not the same as TRANSDATE.
DEFINE FILE VIDEOTRK
DATEX/YMD = DATEADD(TRANSDATE, 'BD', 0);
DATEINT/I8YYMD = DATECVT(TRANSDATE, 'YMD','I8YYMD');
END

TABLE FILE VIDEOTRK
SUM TRANSDATE NOPRINT
COMPUTE DAYNAME/A8 = DOWKL(DATEINT, DAYNAME); AS 'Day of Week'
BY TRANSDATE AS 'Date'
WHERE TRANSDATE NE DATEX
END

The output is:
Date Day of Week
---- -----------
91/06/22 SATURDAY
91/06/23 SUNDAY
91/06/30 SUNDAY

 Using Standard Date and Time Functions

Using Functions 5-9

DATECVT: Converting a Date Format
Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The DATECVT function converts date formats within applications without requiring
intermediate calculations. If an invalid format is supplied, DATECVT returns a zero or a
blank.

Syntax How to Convert a Date Format
DATECVT(date, 'infmt', 'outfmt')

where:
date

Date

Is the date whose format you wish to change. If you supply an invalid date,
DATECVT returns a zero value. When performing the conversion, an indate with an
old format obeys any DEFCENT and YRTHRESH values supplied for that field.

infmt

Alphanumeric

Is one of the following:

• A new date format (for example, YYMD, YQ, M, DMY, JUL) that matches the
format of indate. It can also be the format of the output value enclosed within
single quotes.

• An old date format (for example, I6YMD or A8MDYY).

• A non-date format (such as I8 or A6). A non-date format in the infmt parameter
functions as an offset from the base date of a YYMD field (12/31/1900).

The format of the field for which the value is being calculated must have the same
format as outfmt.

outfmt

Alphanumeric

Is one of the following:

• A new date format (for example, YYMD, YQ, M, DMY, JUL) that matches the
format of indate. It can also be the format of the output value enclosed within
single quotes.

• An old date format (for example, I6YMD or A8MDYY).

• A non-date format (such as I8 or A6). A non-date format in the outfmt parameter
receives an offset from the base date of a YYMD field (12/31/1900).

The format of the field for which the value is being calculated must have the same
format as outfmt.

Date and Time Functions

5-10 Information Builders

Example Converting a DMY Date to YYMD
For example,
field/DMY = DATECVT(indate, 'YYMD', 'DMY');

If the value of indate is 19991231 then field is set to the offset, which is 311299. Indates
with old formats obey any DEFCENT and YRTHRESH values implied for that field
when performing the conversion.

Example Converting a Field to Date Format
In this example, DATECVT converts HIRE_DATE from I6YMD format to dates
formatted as YYMD.
TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND HIRE_DATE AND COMPUTE
NEW_HIRE_DATE/YYMD=DATECVT(HIRE_DATE, 'I6YMD', 'YYMD');
BY LAST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:
LAST_NAME FIRST_NAME HIRE_DATE NEW_HIRE_DATE
--------- ---------- --------- -------------
BLACKWOOD ROSEMARIE 82/04/01 1982/04/01
CROSS BARBARA 81/11/02 1981/11/02
GREENSPAN MARY 82/04/01 1982/04/01
JONES DIANE 82/05/01 1982/05/01
MCCOY JOHN 81/07/01 1981/07/01
SMITH MARY 81/07/01 1981/07/01

DATECVT also supplies a century for HIRE_DATE according to the DEFCENT and
YRTHRESH parameter settings.

 Using Standard Date and Time Functions

Using Functions 5-11

DATEDIF: Finding the Difference Between Two Dates
Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The DATEDIF function returns the difference between two dates in units. A unit can be
any of the following:

• Year. Using the year unit with DATEDIF yields the inverse of DATEADD. If
adding one year to date X creates date Y, then the count of years between date X and
date Y must be one year. Note that adding one year to February 29 produces the date
February 28.

• Month. Using the month unit with DATEDIF yields the inverse of DATEADD. If
adding one month to date X creates date Y, then the count of months between date X
and date Y must be one month. The rule is if the to-date is the end-of-month, then the
month difference may be rounded up (in absolute terms) to guarantee the inverse
rule.

• Day.

• Weekday. If you use the weekday unit, DATEDIF does not count Saturday and
Sunday when adding days. This means that the difference between a Friday and
Monday is one day.

• Business day. When using the business day unit, DATEDIF uses the BUSDAYS
parameter setting and holiday file to determine which days are working days and
disregards the rest. This means that if Monday is not a working day, the difference
between Friday and Tuesday is one day. See Setting Business Days on page 5-3 for
more information.

DATEDIF returns a whole number. If the difference between two dates is not a whole
number, DATEDIF rounds down to the next largest integer. For example, the number of
years between March 2, 2001 and March 1, 2002 would be zero. If the ending date is
before the starting date, DATEDIF returns a negative number.

If you use month units, and one or both of your input dates is the end of the month,
DATEDIF takes this into account. This means that the difference between January 31 and
April 30 is three months, not two months.

Note: You add or subtract non day-based dates (for example YM, YQ) directly without
using DATEDIF.

Date and Time Functions

5-12 Information Builders

Syntax How to Return the Difference Between Two Dates
DATEDIF(from_date, to_date, 'unit')

where:
from_date

Date

Is the starting date from which to calculate the difference.
to_date

Date

Is the ending date from which to calculate the difference.
unit

Alphanumeric

Is one of the following, enclosed in single quotation marks:

Y indicates a year unit.

M indicates a month unit.

D indicates a day unit.

WD indicates a weekday unit.

BD indicates a business day unit.

Example Rounding With DATEDIF
The following expression
DATEDIF(19960302, 19970301, 'Y')

calculates the difference between March 2, 1996 and March 1, 1997. It returns a zero
because the difference is less than a year.

Example Using Month Calculations
The following expressions
DATEDIF(19990228, 19990128, 'M')

DATEDIF(19990228, 19990129, 'M')

DATEDIF(19990228, 19990130, 'M')

DATEDIF(19990228, 19990131, 'M')

all return a result of minus one month.

Additional examples:
DATEDIF(March31, May31, 'M') yields 2.
DATEDIF(March31, May30, 'M') yields 1 (because May 30 is not the end of the month).
DATEDIF(March31, April30, 'M') yields 1.

 Using Standard Date and Time Functions

Using Functions 5-13

Example Determining the Number of Weekdays Between Two Dates
In this example, DATEDIF determines the number of weekdays between the dates in
NEW_HIRE_DATE and NEW_DAT_INC.
TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND
COMPUTE NEW_HIRE_DATE/YYMD = DATECVT(HIRE_DATE, 'I6YMD', 'YYMD'); AND
COMPUTE NEW_DAT_INC/YYMD = DATECVT(DAT_INC, 'I6YMD', 'YYMD'); AND
COMPUTE WDAYS_HIRED/I8=DATEDIF(NEW_HIRE_DATE, NEW_DAT_INC, 'WD');
BY LAST_NAME
IF WDAYS_HIRED NE 0
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:
LAST_NAME FIRST_NAME NEW_HIRE_DATE NEW_DAT_INC WDAYS_HIRED
--------- ---------- ------------- ----------- -----------
IRVING JOAN 1982/01/04 1982/05/14 94
MCKNIGHT ROGER 1982/02/02 1982/05/14 73
SMITH RICHARD 1982/01/04 1982/05/14 94
STEVENS ALFRED 1980/06/02 1982/01/01 414
 ALFRED 1980/06/02 1981/01/01 153

Date and Time Functions

5-14 Information Builders

DATEMOV: Moving a Date to a Significant Point
Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The DATEMOV function moves a date to a significant point on the calendar.
DATEMOV works with date format only.

Syntax How to Move a Date to a Significant Point
DATEMOV(date, 'move-point')

where:
date

Date

Is the date you wish to move. This date can be any new date format as long as it
includes a day component. For example, MDYY can be used but MYY cannot be.

move-point

Alphanumeric

Is the significant point to which you wish to move. An invalid point results in a zero
being returned. Valid points to which to move the date are:

EOM is the end of month.

BOM is the beginning of month.

EOQ is the end of quarter.

BOQ is the beginning of quarter.

EOY is the end of year.

BOY is the beginning of year.

EOW is the end of week.

BOW is the beginning of week.

NWD is the next weekday.

NBD is the next business day.

PWD is the prior weekday.

PBD is the prior business day.

WD- is a weekday or earlier.

BD- is a business day or earlier.

WD+ is a weekday or later.

BD+ is a business day or later.

An invalid point results in a zero being returned.

Note: When using a business day calculation, the result is affected by the days specified
as working days.

 Using Standard Date and Time Functions

Using Functions 5-15

Example Determining Significant Move Points for a Field
The following sets the business days to Monday, Tuesday, Wednesday, and Thursday.
DATEMOV determines significant move points for HIRE_DATE.
SET BUSDAY = _MTWT__
TABLE FILE EMPLOYEE
PRINT
COMPUTE NEW_DATE/YYMD = DATECVT(HIRE_DATE, 'I6YMD', 'YYMD'); AND
COMPUTE NEW_DATE/WT = DATECVT(HIRE_DATE, 'I6YMD', 'YYMD'); AS 'DOW' AND
COMPUTE NWD/WT = DATEMOV(NEW_DATE, 'NWD'); AND
COMPUTE PWD/WT = DATEMOV(NEW_DATE, 'PWD'); AND
COMPUTE WDP/WT = DATEMOV(NEW_DATE, 'WD+'); AS 'WD+' AND
COMPUTE WDM/WT = DATEMOV(NEW_DATE, 'WD-'); AS 'WD-' AND
COMPUTE NBD/WT = DATEMOV(NEW_DATE, 'NBD'); AND
COMPUTE PBD/WT = DATEMOV(NEW_DATE, 'PBD'); AND
COMPUTE WBP/WT = DATEMOV(NEW_DATE, 'BD+'); AS 'WB+' AND
COMPUTE WBM/WT = DATEMOV(NEW_DATE, 'BD-'); AS 'WB-' BY LAST_NAME NOPRINT
HEADING
"Examples of DATEMOV"
"Business days are Monday, Tuesday, Wednesday, + Thursday "
" "
"START DATE..... | MOVE POINTS..........................."
WHERE DEPARTMENT EQ 'MIS';
END

The output is:
Examples of DATEMOV
Business days are Monday, Tuesday, Wednesday, + Thursday

START DATE.....| MOVE POINTS............................
NEW_DATE DOW NWD PWD WD+ WD- NBD PBD BD+ BD-
-------- --- --- --- --- --- --- --- --- ---
1982/04/01 WED THU TUE WED WED SUN TUE WED WED
1981/11/02 SUN MON THU SUN SUN MON WED SUN SUN
1982/04/01 WED THU TUE WED WED SUN TUE WED WED
1982/05/01 FRI MON WED SUN THU MON TUE SUN WED
1981/07/01 TUE WED MON TUE TUE WED MON TUE TUE
1981/07/01 TUE WED MON TUE TUE WED MON TUE TUE

Date and Time Functions

5-16 Information Builders

Example Determining the End of the Week
In this example, DATEMOV determines the date for the end of the week for the dates in
NEW_DATE, and stores the results in the EOW field.
TABLE FILE EMPLOYEE
PRINT FIRST_NAME AND
COMPUTE NEW_DATE/YYMDWT = DATECVT(HIRE_DATE, 'I6YMD', 'YYMDWT'); AND
COMPUTE EOW/YYMDWT = DATEMOV(NEW_DATE, 'EOW');
BY LAST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:
LAST_NAME FIRST_NAME NEW_DATE EOW
--------- ---------- -------- ---
BANNING JOHN 1982 AUG 1, SUN 1982 AUG 6, FRI
IRVING JOAN 1982 JAN 4, MON 1982 JAN 8, FRI
MCKNIGHT ROGER 1982 FEB 2, TUE 1982 FEB 5, FRI
ROMANS ANTHONY 1982 JUL 1, THU 1982 JUL 2, FRI
SMITH RICHARD 1982 JAN 4, MON 1982 JAN 8, FRI
STEVENS ALFRED 1980 JUN 2, MON 1980 JUN 6, FRI

HADD: Incrementing a Date-Time Field
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HADD function increments a date-time field by a given number of units.

Syntax How to Increment a Date-Time Field
HADD (dtfield, 'component', increment, length, 'format')

where:
dtfield

Is the date-time value to increment. You can supply the name of a date-time field, a
date-time constant, or an expression that returns a date-time value.

component

Is the name of the component to be incremented, enclosed in single quotation marks.
For a list of these components see Component Names and Values for Use With
Date-Time Functions on page 5-2.

increment

Is the number of units by which to increment the specified component. You can
supply the actual value, the name of a numeric field that contains the value, or an
expression that returns the value.

 Using Standard Date and Time Functions

Using Functions 5-17

length

Is the length of the returned date-time value. Valid values are:

8 for time values to include milliseconds.

10 for time values to include microseconds.
format

Is the format of the returned date-time value, enclosed in single quotation marks. The
format must be a date-time format (data type H).

Example Incrementing the Month Component of a Date-Time Field
In the following, HADD adds two months to the values in the TRANSDATE field.
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ADD_MONTH/HYYMDS = HADD (TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME ADD_MONTH
------ --------- ---------
1118 2000/06/26 05:45 2000/08/26 05:45:00
1237 2000/02/05 03:30 2000/04/05 03:30:00

If necessary, the day is adjusted to be valid for the resulting month.

HCNVRT: Converting a Date-Time Field to Alphanumeric Format
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HCNVRT function converts a date-time field to alphanumeric format for use with
operators such as EDIT, CONTAINS, and LIKE.

Date and Time Functions

5-18 Information Builders

Syntax How to Convert a Date-Time Field to Alphanumeric Format
HCNVRT (value, '(fmt)', length, 'outputfmt')

where:
value

Is the date-time value to convert. You can supply the name of a date-time field, a
date-time constant, or an expression that returns a date-time value.

fmt

Is the USAGE format of the date-time field being converted, enclosed in parentheses
and single quotation marks. The format must be a date-time format (data type H).

length

Is the length of the alphanumeric field being returned. You can supply the actual
value, the name of a numeric field that contains the value, or an expression that
returns the value. If length is smaller than the number of characters needed to display
the alphanumeric field, a blank field is returned.

outputfmt

Alphanumeric

Is the format of the returned alphanumeric value, enclosed in single quotation marks.

Example Converting a Date-Time Field to Alphanumeric Format
In the following, HCNVRT converts the TRANSDATE field to alphanumeric format.
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ALPHA_DATE_TIME1/A20 = HCNVRT (TRANSDATE,'(H17)', 17, 'A20');
ALPHA_DATE_TIME2/A20 = HCNVRT (TRANSDATE,'(HYYMDS)', 20, 'A20');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME ALPHA_DATE_TIME1 ALPHA_DATE_TIME2
------ --------- ---------------- ----------------
1118 2000/06/26 05:45 20000626054500000 2000/06/26 05:45:00
1237 2000/02/05 03:30 20000205033000000 2000/02/05 03:30:00

 Using Standard Date and Time Functions

Using Functions 5-19

HDATE: Converting the Date Portion of a Date-Time Field to a Date
Format

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HDATE function extracts the date portion of a date-time field, converts it to a date
format, and returns the result in the format YYMD. The result can then be converted to
other date formats.

Syntax How to Convert the Date Portion of a Date-Time Field to a
Date Format
HDATE (dtfield, 'YYMD')

where:
dtfield

Is the date-time value. You can supply the name of a date-time field, a date-time
constant, or an expression that returns a date-time value.

Example Converting the Date Portion of a Field to a Date Format
In the following, HDATE converts the date portion of the TRANSDATE field to the date
format YYMD.
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANSDATE_DATE/YYMD = HDATE(TRANSDATE, 'YYMD');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME TRANSDATE_DATE
------ --------- --------------
1118 2000/06/26 05:45 2000/06/26
1237 2000/02/05 03:30 2000/02/05

Date and Time Functions

5-20 Information Builders

HDIFF: Finding the Number of Units Between Two Date-Time Values
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HDIFF function calculates the number of boundaries of a given type crossed
between two dates.

Syntax How to Find the Number of Units Between Two Date-Time
Values
HDIFF (dtvalue1, dtvalue2, 'component', 'format')

where:
dtvalue1

Is the ending date-time value. You can supply the name of a date-time field, a
date-time constant, or an expression that returns a date-time value.

dtvalue2

Is the starting date-time value. You can supply the name of a date-time field, a
date-time constant, or an expression that returns a date-time value.

component

Is the name of the component to be used in the calculation, enclosed in single
quotation marks. If the unit is weeks, the WEEKFIRST setting is used in the
calculation.

format

Is the format of the result, enclosed in single quotation marks. The format must be
double-precision format.

Example Finding the Number of Days Between Two Date-Time Fields
In the following, HDIFF finds the number of days between the ADD_MONTH and
TRANSDATE fields.
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ADD_MONTH/HYYMDS = HADD (TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');
DIFF_DAYS/D12.2 = HDIFF(ADD_MONTH, TRANSDATE, 'DAY', 'D12.2');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME ADD_MONTH DIFF_DAYS
------ --------- --------- ---------
1118 2000/06/26 05:45 2000/08/26 05:45:00 61.00
1237 2000/02/05 03:30 2000/04/05 03:30:00 60.00

 Using Standard Date and Time Functions

Using Functions 5-21

HDTTM: Converting a Date field to a Date-Time Field
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HDTTM function converts a date field to a date-time field. The time portion is set to
midnight.

Syntax How to Convert a Date Field to a Date-Time Field
HDTTM (date, length, format)

where:
date

Is the date value to be converted. You can supply the name of a date field, a date
constant, or an expression that returns a date value.

length

Is the length of the returned date-time value. Valid values are:

8 for time values including milliseconds.

10 for time values including microseconds.
format

Is the format of the returned date-time value. The format must be a date-time format
(data type H).

Example Converting a Date Field to a Date-Time Field
In the following, HDTTM converts the date field TRANSDATE_DATE to a date-time
field.
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANSDATE_DATE/YYMD = HDATE(TRANSDATE, 'YYMD');
DT2/HYYMDIA = HDTTM(TRANSDATE_DATE, 8, 'HYYMDIA');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME TRANSDATE_DATE DT2
------ --------- -------------- ---
1118 2000/06/26 05:45 2000/06/26 2000/06/26 12:00AM
1237 2000/02/05 03:30 2000/02/05 2000/02/05 12:00AM

Date and Time Functions

5-22 Information Builders

HGETC: Storing the Current Date and Time in a Date-Time Field
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000 NT/2000

Available Languages: reporting, Maintain

The HGETC function stores the current date and time in a date-time field. If millisecond
or microsecond values are not available in your operating environment, the value
returned for these components is zero.

Syntax How to Store the Current Date and Time in a Date-Time Field
HGETC (length, 'format')

where:
length

Is the length of the returned date-time value. Valid values are:

8 for time values including milliseconds.

10 for input time values including microseconds.
format

Is the format of the returned date-time value, enclosed in single quotation marks. The
format must be a date-time format (data type H).

Example Storing the Current Date and Time in a Date-Time Field
In the following, HGETC stores the current date and time in field DT2:
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
DT2/HYYMDm = HGETC(10, 'HYYMDm');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME DT2
------ --------- ---
1118 2000/06/26 05:45 2000/10/03 15:34:24.000000
1237 2000/02/05 03:30 2000/10/03 15:34:24.000000

 Using Standard Date and Time Functions

Using Functions 5-23

HHMMSS: Returning the Current Time
Available Operating Systems: All

Available Languages: reporting, Maintain

The HHMMSS function retrieves the current time from the operating system and returns
the time as an eight-character string, separating the hours minutes and seconds with
periods for reporting and colons for Maintain.

Note:

• &TOD returns the current time of day.

• Compiled MODIFY procedures must use the HHMMSS function to obtain the time;
they cannnot use the &TOD variable. The &TOD variable is made current only
when you execute a MODIFY, SCAN, or FSCAN procedure.

Syntax How to Retrieve the Current Time
HHMMSS(outfield)

where:
outfield

Alphanumeric

Is the name of the field to which the time is returned, or the format of the output
value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Displaying the Current Time
The following retrieves the current time and displays it in a report footing:
TABLE FILE EMPLOYEE
SUM CURR_SAL AS 'TOTAL SALARIES' AND COMPUTE
NOWTIME/A8 = HHMMSS(NOWTIME); NOPRINT
BY DEPARTMENT
FOOTING
"SALARY REPORT RUN AT TIME <NOWTIME"
END

The output is:
DEPARTMENT TOTAL SALARIES
---------- --------------
MIS $108,002.00
PRODUCTION $114,282.00

SALARY REPORT RUN AT TIME 15.21.14

Date and Time Functions

5-24 Information Builders

HINPUT: Converting an Alphanumeric String to a Date-Time Value
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HINPUT function converts an alphanumeric string to a date-time value.

Syntax How to Convert an Alphanumeric String to a Date-Time Value
HINPUT (inputlength, 'inputstring', length, 'Hfmt')

where:
inputlength

Is the length of the alphanumeric string to convert. You can supply the actual value,
the name of a numeric field that contains the value, or an expression that returns the
value.

inputstring

Is the alphanumeric string to convert. You can supply the actual string enclosed in
single quotation marks, the name of an alphanumeric field, or an expression that
returns an alphanumeric value. The alphanumeric string can consist of any valid
date-time input value as described in Describing Data.

length

Is the length of the returned date-time value. Valid values are:

8 for time values down to milliseconds.

10 for time values down to microseconds.
Hfmt

Is the format of the returned date-time value, enclosed in single quotation marks.

Example Converting an Alphanumeric String to a Date-Time Value
In the following request, HCNVRT converts the TRANSDATE field to alphanumeric
format, and then HINPUT converts the alphanumeric string to a date-time value.
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ALPHA_DATE_TIME/A20 = HCNVRT (TRANSDATE,'(H17)', 17, 'A20');
DT_FROM_ALPHA/HYYMDS = HINPUT(14, ALPHA_DATE_TIME, 8, 'HYYMDS');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME ALPHA_DATE_TIME DT_FROM_ALPHA
------ --------- --------------- -------------
1118 2000/06/26 05:45 20000626054500000 2000/06/26 05:45:00
1237 2000/02/05 03:30 20000205033000000 2000/02/05 03:30:00

 Using Standard Date and Time Functions

Using Functions 5-25

HMIDNT: Setting the Time Portion of a Date-Time Field to Midnight
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HMIDNT function changes the time portion of a date-time field to midnight (all
zeroes). This function can be used for testing date-time fields for a given date.

Syntax How to Set the Time Portion of a Date-Time Field to Midnight
HMIDNT (value, length, 'format')

where:
value

Is a date-time value. You can supply the name of a date-time field, a date-time
constant, or an expression that returns a date-time value.

length

Is the length of the returned date-time value. Valid values are:

8 for time values down to milliseconds.

10 for time values down to microseconds.
format

Is the format of the returned date-time value, enclosed in single quotation marks. The
format must be a date-time format (data type H).

Example Setting the Time to Midnight
In the following request, HMIDNT sets the time portion of the TRANSDATE field to
midnight.
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
TRANSDATE_MID_24/HYYMDS = HMIDNT(TRANSDATE, 8, 'HYYMDS');
TRANSDATE_MID_12/HYYMDSA = HMIDNT(TRANSDATE, 8, 'HYYMDSA');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME TRANSDATE_MID_24 TRANSDATE_MID_12
------ --------- ---------------- ----------------
1118 2000/06/26 05:45 2000/06/26 00:00:00 2000/06/26 12:00:00AM
1237 2000/02/05 03:30 2000/02/05 00:00:00 2000/02/05 12:00:00AM

Date and Time Functions

5-26 Information Builders

HNAME: Extracting a Date-Time Component in Alphanumeric
Format

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HNAME function extracts a specified component from a date-time field and returns
it in alphanumeric format.

Syntax How to Extract a Date-Time Component in Alphanumeric
Format
HNAME (value, 'component', format)

where:
value

Is the date-time value. You can supply the name of a date-time field, a date-time
constant, or an expression that returns a date-time value.

component

Is the name of the component to be extracted, enclosed in single quotation marks.
See Component Names and Values for Use With Date-Time Functions on page 5-2
for a list of supported components.

format

Is the alphanumeric format of the returned component, enclosed in single quotation
marks. All other components are converted to strings of digits only. The year is
always four digits, and the hour assumes the 24-hour system.

 Using Standard Date and Time Functions

Using Functions 5-27

Example Extracting the Week Component From a Field
In the following request, HNAME extracts the week in alphanumeric format from the
TRANSDATE field. Changing the WEEKFIRST setting changes the value of the
extracted component.
SET WEEKFIRST = 7
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
WEEK_COMPONENT/A10 = HNAME(TRANSDATE, 'WEEK', 'A10');
WHERE DATE EQ 2000
END

When WEEKFIRST is set to 7, the output is:
CUSTID DATE-TIME WEEK_COMPONENT
------ --------- --------------
1118 2000/06/26 05:45 26
1237 2000/02/05 03:30 05

When WEEKFIRST is set to 3, the output is:
CUSTID DATE-TIME WEEK_COMPONENT
------ --------- --------------
1118 2000/06/26 05:45 25
1237 2000/02/05 03:30 05

Example Extracting the Day Component From a Date-Time Field
In the following request, HNAME extracts the day in alphanumeric format from the
TRANSDATE field.
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
DAY_COMPONENT/A2 = HNAME(TRANSDATE, 'DAY', 'A2');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME DAY_COMPONENT
------ --------- -------------
1118 2000/06/26 05:45 26
1237 2000/02/05 03:30 05

Date and Time Functions

5-28 Information Builders

HPART: Returning a Date-Time Component in Numeric Format
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HPART function extracts a specified component from a date-time field and returns it
in numeric format.

Syntax How to Return a Date-Time Component in Numeric Format
HPART (value, 'component', 'format')

where:
value

Is the date-time value. You can supply the name of a date-time field, a date-time
constant, or an expression that returns a date-time value.

component

Is the name of the component to be extracted, enclosed in single quotation marks.
See Component Names and Values for Use With Date-Time Functions on page 5-2
for a list of supported components.

format

Is the integer format of the returned component, enclosed in single quotation marks.
The year is always four digits, and the hour assumes the 24-hour system.

Example Extracting the Day Component in Numeric Format From a
Date-Time Field
In the following request, HPART extracts the day in integer format from the
TRANSDATE field.
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
DAY_COMPONENT/I2 = HPART(TRANSDATE, 'DAY', 'I2');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME DAY_COMPONENT
------ --------- -------------
1118 2000/06/26 05:45 26
1237 2000/02/05 03:30 5

 Using Standard Date and Time Functions

Using Functions 5-29

HSETPT: Inserting a Component Into a Date-Time Field
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HSETPT function inserts the numeric value of a specified component into a
date-time field.

Syntax How to Insert a Component Into a Date-Time Field
HSETPT (dtfield, 'component', value, length, 'format')

where:
dtfield

Is the date-time value. You can supply the name of a date-time field, a date-time
constant, or an expression that returns a date-time value.

component

Is the name of the component to be inserted, enclosed in single quotation marks. See
Component Names and Values for Use With Date-Time Functions on page 5-2 for a
list of supported components.

value

Is the numeric value to use for the requested component. You can supply the actual
value, the name of a numeric field that contains the value, or an expression that
returns the value.

length

Is the length of the returned date-time value. Valid values are:

8 for time values down to milliseconds.

10 for time values down to microseconds.
format

Is the format of the returned date-time value, enclosed in single quotation marks. The
format must be a date-time format (data type H).

Example Inserting the Day Component Into a Date-Time Field
In the following request, HSETPT inserts the day into the ADD_MONTH field.
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
ADD_MONTH/HYYMDS = HADD (TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');
INSERT_DAY/HYYMDS = HSETPT(ADD_MONTH, 'DAY', 28, 8, 'HYYMDS');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME ADD_MONTH INSERT_DAY
------ --------- --------- ----------
1118 2000/06/26 05:45 2000/08/26 05:45:00 2000/08/28 05:45:00
1237 2000/02/05 03:30 2000/04/05 03:30:00 2000/04/28 03:30:00

Date and Time Functions

5-30 Information Builders

HTIME: Converting the Time Portion of a Date-Time Field to a
Number

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The HTIME function converts the time portion of a date-time field to a numeric number
of milliseconds if the first argument is 8, or microseconds if the first argument is 10. To
include microseconds, the input date-time field must be a 10-byte field.

Syntax How to Convert the Time Portion of a Date-Time Field to a
Number
HTIME (length, value, 'format')

where:
length

Is the length of the input date-time value. Valid values are:

8 for time values down to milliseconds.

10 for input time values down to microseconds.
value

Is the date-time value from which to extract the time. You can supply the name of a
date-time field, a date-time constant, or an expression that returns a date-time value.

format

Is the format of the returned number of milliseconds or microseconds, enclosed in
single quotation marks. The format must be a double-precision format.

Example Converting the Time Portion of a Date-Time Field to a Number
In the following request, HTIME converts the time portion of the TRANSDATE field to
the number of milliseconds.
TABLE FILE VIDEOTR2
PRINT CUSTID TRANSDATE AS 'DATE-TIME' AND COMPUTE
MILLISEC/D12.2 = HTIME(8, TRANSDATE, 'D12.2');
WHERE DATE EQ 2000
END

The output is:
CUSTID DATE-TIME MILLISEC
------ --------- --------
1118 2000/06/26 05:45 20,700,000.00
1237 2000/02/05 03:30 12,600,000.00

 Using Standard Date and Time Functions

Using Functions 5-31

TODAY: Returning the Current Date
Available Operating Systems: All

Available Languages: reporting, Maintain

The TODAY function retrieves the current date from the system in the format
MM/DD/YY or MM/DD/YYYY. The TODAY function always returns a date that is
current. Therefore, if you are running an application late at night, you may want to use
the TODAY function. You can remove the embedded slashes using the EDIT function.
You can also retrieve the date in the same format (separated by slashes) by using the
system variable &DATE. You can retrieve the date without the slashes using the system
variables &YMD, &MDY, and &DMY. The system variable &DATEfmt retrieves the
date in a specified format.

Syntax How to Retrieve the Current Date
TODAY(outfield)

where:
outfield

Alphanumeric, at least A8

Is the name of the field to which the current date in MM/DD/YY[YY] format is
returned, or the format of the output value enclosed in single quotation marks. The
following determines the format:

• If DATEFNS=ON and the format is A8 or A9, TODAY returns the 2-digit year.

• If DATEFNS=ON and the format is A10 or greater, TODAY returns the 4-digit
year.

• If DATEFNS=OFF, TODAY returns the 2-digit year, regardless of the format of
outfield.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Date and Time Functions

5-32 Information Builders

Example Displaying the Current Date
In the following request, TODAY retrieves the current date and stores it in the DATE
field. The DATE field is then used to display the date in a report heading.
DEFINE FILE EMPLOYEE
DATE/A10 WITH EMP_ID=TODAY(DATE);
END

TABLE FILE EMPLOYEE
SUM CURR_SAL BY DEPARTMENT
HEADING
"PAGE <TABPAGENO "
"SALARY REPORT RUN ON <DATE "
END

The output is:
PAGE 1
SALARY REPORT RUN ON 12/13/1999
DEPARTMENT CURR_SAL
---------- --------
MIS $108,002.00
PRODUCTION $114,282.00

Using Legacy Date Functions
The functions listed in this topic are legacy functions. These functions were created for
use with dates in integer, packed decimal, or alphanumeric format.

The following is the difference between a date format (formerly called a smart date) and
a legacy date:

• A date format refers to an internally stored integer that represents the number of days
between a real date value and a base date (either December 31, 1900, for dates with
YMD or YYMD format; or January 1901, for dates with YM, YYM, YQ, or YYQ
format). A Master File does not specify a data type or length for a date format;
instead, it specifies display options such as D (day), M (month), Y (2-digit year), or
YY (4-digit year). For example, MDYY in the USAGE (also known as FORMAT)
attribute of a Master File is a date format. A real date value such as March 5, 1999,
displays as 03/05/1999, and is internally stored as the offset from December 31,
1900.

• A legacy date refers to an integer, packed decimal, or alphanumeric format with date
edit options, such as I6YMD, A6MDY, I8YYMD, or A8MDYY. For example,
A6MDY is a 6-byte alphanumeric string; the suffix MDY indicates how Information
Builders will return the data in the field. The sample value 030599 displays as
03/05/99.

 Using Legacy Date Functions

Using Functions 5-33

 Using Legacy Versions of Date Functions
All date functions have been rewritten to support dates for the year 2000 and later. The
old versions of these functions may not work correctly with dates after December 31,
1999. However, in some cases you may want to use the old version of the function, for
example, if you do not use year 2000 dates. You can “turn off” the new versions with the
DATEFNS parameter.

For details of how the DATEFNS parameter affects a specific function, see the
description of the function.

Syntax How to Activate Legacy Date Functions
SET DATEFNS = {ON|OFF}

where:
ON

Activates the functions that support dates for the year 2000 and beyond. This value is
the default.

OFF

Deactivates the functions that support dates for the year 2000 and beyond.

Using Dates With Two and Four-Digit Years
Legacy date functions accept dates with two or four digit years. Four digit years that
display the century, such as 2000 and 1900, can be used if their formats are specified as
I8YYMD, P8YYMD, D8YYMD, F8YYMD, or A8YYMD. Two-digit years that do not
specify the century can utilize the DEFCENT and YRTHRESH parameters to assign
century values if the field has a length of six (for example, I6YMD). For information on
these parameters see Customizing Your Environment in Developing Applications.

Example Using Four-Digit Years
The following example illustrates how to use the EDIT function to assign dates with
four-digit years. It then converts these dates to Julian and Gregorian formats.
DEFINE FILE EMPLOYEE
DATE/I8YYMD = EDIT('19'|EDIT(HIRE_DATE));
JDATE/I7 = JULDAT(DATE, 'I7');
GDATE/I8 = GREGDT(JDATE, 'I8');
END

TABLE FILE EMPLOYEE
PRINT DATE JDATE GDATE
END

The output is:
 DATE JDATE GDATE
 ---- ----- -----
1996/01/01 1996001 19960101
2001/01/01 2001001 20010101
2001/01/01 2001001 20010101
2001/01/01 2001001 20010101
1999/12/31 1999365 19991231

Date and Time Functions

5-34 Information Builders

Example Using Two-Digit Years
The following example shows how to return an eight-digit date from the AYMD function
when the input argument has a six-digit date legacy format. Since DEFCENT is 19 and
YRTHRESH is 50, year values from 50 through 99 are interpreted as 1950 through 1999,
and year values from 00 through 49 are interpreted as 2000 through 2049:
SET DEFCENT=19, YRTHRESH=50
TABLE FILE DATE
PRINT D2_I6YMD AND COMPUTE
NEWDATE/I8YYMD=AYMD(D2_I6YMD,1,'I8');
END

The DEFCENT and YRTHRESH values create a 100-year window as follows:
0------------------------< YRTHRESH=50 ≥----------------------99
 � �

 Century=DEFCENT+1 (20) Century=DEFCENT (19)

The output is:
D2_I6YMD NEWDATE
-------- ----------
97/09/16 1997/09/17
00/02/29 2000/03/01
01/02/28 2001/03/01
00/02/28 2000/02/29

 Using Legacy Date Functions

Using Functions 5-35

AYM: Adding or Subtracting Months to or From Dates
Available Operating Systems: OS/390, UNIX, VM/CMS, Windows NT/2000

Available Languages: reporting, Maintain

The AYM function adds and subtracts months from dates in year-month format. You can
convert a date to this format by using the CHGDAT function or the EDIT function.

Syntax How to Add or Subtract Months to or From Dates
AYM(indate, months, outfield)

where:
indate

Numeric

Is the input date in year-month format. If the date is not valid, AYM returns a 0.
months

Integer

Is the number of months you are adding or subtracting from the date. To subtract
months, use a negative number.

outfield

Integer

Is the name of the field to which the resulting date in year-month format is returned,
or the format of the output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Tip:
If the input date is in integer year-month-day format (I6YMD or I8YYMD), simply divide the
date by 100 to convert to year-month format and set the result to an integer. This causes
the day portion of the date, which is now after the decimal point, to be dropped.

Date and Time Functions

5-36 Information Builders

Example Adding Months to a Date
The following request adds six months to the hire date of employees. AYM takes a
starting date that you supply (in this case, HIRE_MONTH, in YM format), and uses a
monthly interval that you supply (in this case, 6), to determine a resulting date
(AFTER6MONTHS, also in YM format).

Note that the COMPUTE command converts the dates from year-month-day to
year-month formats by dividing the dates by 100.
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
HIRE_MONTH/I4YM = HIRE_DATE/100 ;
AFTER6MONTHS/I4YM = AYM(HIRE_MONTH, 6, AFTER6MONTHS);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:
LAST_NAME FIRST_NAME HIRE_DATE HIRE_MONTH AFTER6MONTHS
--------- ---------- --------- ---------- ------------
BLACKWOOD ROSEMARIE 82/04/01 82/04 82/10
CROSS BARBARA 81/11/02 81/11 82/05
GREENSPAN MARY 82/04/01 82/04 82/10
JONES DIANE 82/05/01 82/05 82/11
MCCOY JOHN 81/07/01 81/07 82/01
SMITH MARY 81/07/01 81/07 82/01

 Using Legacy Date Functions

Using Functions 5-37

AYMD: Adding or Subtracting Days to or From Dates
Available Operating Systems:OS/390, UNIX, VM/CMS, Windows NT/2000

Available Languages: reporting, Maintain

The AYMD function takes a valid date in year-month-day format and adds or subtracts a
given number of days from the date. You can convert a date to this format using the
CHGDAT function or EDIT function.

If the addition or subtraction of days crosses forward or back into a century, the century
digits of the output year are adjusted.

Syntax How to Add or Subtract Days to or From Dates
AYMD(indate, days, outfield)

where:
indate

Integer

Is the input date in year-month-day format or the field that contains the input date. If
indate is a field name, it must refer to a field with I6, I6YMD, I8, I8YYMD, P6,
P6YMD, F6, F6YMD, D6, or D6YMD format. If the date is not valid, the function
returns a 0.

days

Integer

Is the number of days you are adding to indate. To subtract days, use a negative
number.

outfield

I6, I6YMD, I8, or I8YYMD

Is the name of the field to which the resulting date is returned, or the format of the
output value enclosed in single quotation marks. If indate is a field, both fields must
have the same format.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Date and Time Functions

5-38 Information Builders

Example Adding Days to a Date
The following request adds 35 days to the hire date of employees. AYMD takes the date
in HIRE_DATE and uses the interval 30 to calculate a new date, and saves the result in
AFTER35DAYS.
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
AFTER35DAYS/I6YMD = AYMD(HIRE_DATE, 35, AFTER35DAYS);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:
LAST_NAME FIRST_NAME HIRE_DATE AFTER35DAYS
--------- ---------- --------- -----------
BANNING JOHN 82/08/01 82/09/05
IRVING JOAN 82/01/04 82/02/08
MCKNIGHT ROGER 82/02/02 82/03/09
ROMANS ANTHONY 82/07/01 82/08/05
SMITH RICHARD 82/01/04 82/02/08
STEVENS ALFRED 80/06/02 80/07/07

CHGDAT: Changing Date Formats
Available Operating Systems: OS/390, UNIX, VM/CMS, Windows NT/2000

Available Languages: reporting, Maintain

The CHGDAT function rearranges the year, month, and day portions of dates and
converts dates between long and short date formats. Long formats contain the year,
month, and day; short formats contain one or two of these elements, such as year and
month, or just day. A format can be longer if four digits are used for the year (for
example, 1987), or shorter if only the last two digits are used (for example, 87).

The format of the date to be converted and the resulting date contain the following
characters in any combination:

D Days in the month (01 through 31).

M Months in the year (01 through 12).

Y[Y] Year. One Y indicates a two-digit date (such as 94); two Y’s indicate a
four-digit date (such as 1994).

If you want to spell out the month rather than use a number for the month, you can
append one of the following to the format of the resulting date:

T Displays the month as a three-letter abbreviation.

X Displays the full name of month.

Any other character in the format is ignored.

 Using Legacy Date Functions

Using Functions 5-39

If you are converting a date from short to long format (for example, from year-month to
year-month-day), the function supplies the portion of the date missing in the short format,
as shown in the following table:

Portion of Date Missing Portion Supplied by the Function

Day (that is, from YM to YMD) Last day of the month.

Month (that is, from Y to YM) The month 12 (December).

Year (that is, from MD to YMD) The year 99.

Converting year from short to long form
(that is, from YMD to YYMD)

If DATEFNS=ON, the century will be
determined by the 100-year window
defined by DEFCENT and YRTHRESH.
See Working With Cross-Century Dates
in Developing Applications for details on
DEFCENT and YRTHRESH.

If DATEFNS=OFF, the year 19xx, where
xx is the last two digits in the year.

Syntax How to Change Date Formats
CHGDAT('oldformat', 'newformat', indate, outfield)

where:
'oldformat'

A5

Is the format of the input date.
'newformat'

A5

Is the format of the converted date.
indate

Alphanumeric

Is the input date. If the date is in numeric format, change it to alphanumeric format
using the EDIT function. If the input date is invalid, the function returns spaces.

outfield

Alphanumeric or A17

Is the name of the field to which the converted date is returned, or the format of the
output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Tip:
Since CHGDAT returns the date in alphanumeric format with 17 characters, you can use
the EDIT function to truncate this field to a shorter field or to convert the date to numeric
format.

Date and Time Functions

5-40 Information Builders

Example Converting a Numeric Date to Its Full Name
In this example, CHGDAT takes a date that you supply (in this case, DATE) in YMD
format and converts it to a resulting date (NEWDATE) in MDYYX format.
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
ALPHA_HIRE/A6 = EDIT(HIRE_DATE); NOPRINT AND COMPUTE
HIRE_MDY/A17 = CHGDAT('YMD', 'MDYYX', ALPHA_HIRE, 'A17');
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:
LAST_NAME FIRST_NAME HIRE_DATE HIRE_MDY
--------- ---------- --------- --------
BANNING JOHN 82/08/01 AUGUST 01 1982
IRVING JOAN 82/01/04 JANUARY 04 1982
MCKNIGHT ROGER 82/02/02 FEBRUARY 02 1982
ROMANS ANTHONY 82/07/01 JULY 01 1982
SMITH RICHARD 82/01/04 JANUARY 04 1982
STEVENS ALFRED 80/06/02 JUNE 02 1980

DA Functions: Converting a Date to an Integer
Available Operating Systems: All

Available Languages: reporting, Maintain

The DA functions convert dates to the number of days between the date and December
31, 1899. By converting dates to the number of days, you can add and subtract dates and
calculate the intervals between them. You can convert the results back to date format by
using the DT functions discussed in DT Functions: Converting an Integer to a Date on
page 5-67.

There are six DA functions; each one accepts dates in a different format.

 Using Legacy Date Functions

Using Functions 5-41

Syntax How to Convert a Date to an Integer
function(indate, outfield)

where:
function

Is one of the following:

DADMY converts dates in day-month-year format.
DADYM converts dates in day-year-month format.
DAMDY converts dates in month-day-year format.
DAMYD converts dates in month-year-day format.
DAYDM converts dates in year-day-month format.
DAYMD converts dates in year-month-day format.

indate

Numeric

Is the input date or a field that contains the date. The date is truncated to an integer
before conversion. The date format is determined by the function, as explained
above.
To specify the year, enter only the last two digits; the function assumes the century
component. If the date is invalid, the function returns a 0.

outfield

Alphanumeric
Is the name of the field to which the number of days this century is returned, or the
format of the output value enclosed in single quotation marks.
Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Calculating the Difference Between Two Dates
The following example shows the number of days elapsed between the time employees
get raises and the time they were hired. DAYMD takes two dates that you supply (in this
case, DAT_INC and HIRE_DATE) in YMD format, converts both to the number of days
since December 31, 1899, and subtracts the smaller from the larger:
TABLE FILE EMPLOYEE
PRINT DAT_INC AS 'RAISE DATE' AND COMPUTE
DAYS_HIRED/I8 = DAYMD(DAT_INC, 'I8') - DAYMD(HIRE_DATE, 'I8');
BY LAST_NAME BY FIRST_NAME
IF DAYS_HIRED NE 0
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:
LAST_NAME FIRST_NAME RAISE DATE DAYS_HIRED
--------- ---------- ---------- ----------
IRVING JOAN 82/05/14 130
MCKNIGHT ROGER 82/05/14 101
SMITH RICHARD 82/05/14 130
STEVENS ALFRED 82/01/01 578
 81/01/01 213

Date and Time Functions

5-42 Information Builders

DMY, MDY, YMD: Calculating the Difference Between Two Dates
Available Operating Systems: All

Available Languages: reporting, Maintain

The DMY, MDY, and YMD functions calculate the difference between two dates in
integer, alphanumeric, or packed format.

Syntax How to Calculate the Difference Between Two Dates
function(begin, end)

where:
function

Is one of the following:

DMY calculates the difference between two dates in day-month-year format.

MDY calculates the difference between two dates in month-day-year format.

YMD calculates the difference between two dates in year-month-day format.
begin

Numeric

Is the beginning date. You may supply the actual date or the name of a field that
contains the date.

end

Numeric

Is the end date. You may supply the actual date or the name of a field that contains
the date.

Example Calculating the Number of Days Between Two Dates
The following request calculates the number of days between an employee’s start date
and first pay raise. YMD takes the dates in HIRE_DATE and DAT_INC, and calculates
the number of days between them.
TABLE FILE EMPLOYEE
SUM HIRE_DATE FST.DAT_INC AS 'FIRST PAY,INCREASE' AND COMPUTE
DIFF/I4 = YMD(HIRE_DATE, FST.DAT_INC) ; AS 'DAYS,BETWEEN'
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:
 FIRST PAY DAYS
LAST_NAME FIRST_NAME HIRE_DATE INCREASE BETWEEN
--------- ---------- --------- --------- -------
BLACKWOOD ROSEMARIE 82/04/01 82/04/01 0
CROSS BARBARA 81/11/02 82/04/09 158
GREENSPAN MARY 82/04/01 82/06/11 71
JONES DIANE 82/05/01 82/06/01 31
MCCOY JOHN 81/07/01 82/01/01 184
SMITH MARY 81/07/01 82/01/01 184

 Using Legacy Date Functions

Using Functions 5-43

DOWK and DOWKL: Finding the Day of the Week
Available Operating Systems: All

Available Languages: reporting, Maintain

The DOWK and DOWKL functions find the day of the week that corresponds to a date.
The DOWK function returns the day as a 3-letter abbreviation; the DOWKL function
displays the full name of the day.

Syntax How to Find the Day of the Week
DOWK(indate, outfield)

or
DOWKL(indate, outfield)

where:
indate

Numeric

Is the input date in year-month-day format. If the date is not valid, the function
returns spaces. If the date specifies a 2-digit year and DEFCENT and YRTHRESH
values have not been set, the function assumes the 20th century.

outfield

DOWK: A4

DOWKL: A12

Is the name of the field to which the day of the week is returned, or the format of the
output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Finding the Day of the Week
In this example, DOWK uses the argument in HIRE_DATE to determine the day of the
week employees were hired, and stores the result in DATED.
TABLE FILE EMPLOYEE
PRINT EMP_ID AND HIRE_DATE AND COMPUTE
DATED/A4 = DOWK(HIRE_DATE, DATED);
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:
EMP_ID HIRE_DATE DATED
------ --------- -----
071382660 80/06/02 MON
119265415 82/01/04 MON
119329144 82/08/01 SUN
123764317 82/01/04 MON
126724188 82/07/01 THU
451123478 82/02/02 TUE

Date and Time Functions

5-44 Information Builders

DT Functions: Converting an Integer to a Date
Available Operating Systems: All

Available Languages: reporting, Maintain

The DT functions convert an integer representing the days elapsed since December 31,
1899 to the corresponding date. The DT functions are useful when you are performing
arithmetic on a date converted to the number of days (see DA Functions: Converting a
Date to an Integer on page 5-40). The DT functions convert the result back to date
format.

There are six DT functions. Each one converts a number into a date of a different format.

Syntax How to Convert Integers to Dates
function(number, outfield)

where:
function

Is one of the following:

DTDMY converts numbers to day-month-year dates.

DTDYM converts numbers to day-year-month dates.

DTMDY converts numbers to month-day-year dates.

DTMYD converts numbers to month-year-day dates.

DTYDM converts numbers to year-day-month dates.

DTYMD converts numbers to year-month-day dates.
number

Numeric

Is the number of days since December 31, 1899. The number is truncated to an
integer.

outfield

Integer

Is the name of the field to which the corresponding date is returned, or the format of
the output value enclosed in single quotation marks. The date format is determined
by the function being used.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

 Using Legacy Date Functions

Using Functions 5-45

Example Converting an Integer to a Date
The following takes a date that has been converted to the number of days (34650) and
converts it back to the corresponding date, in month-day-year format. DAYMD takes the
argument HIRE_DATE, determines how many days have passed since December 31,
1899, and stores the result in NEWF. Then DTMDY takes NEWF, converts the result
back to a date, this time with a four-digit year, and stores the result in
NEW_HIRE_DATE.
-* THIS PROCEDURE CONVERTS HIRE_DATE, WHICH IS IN I6YMD FORMAT,
-* TO A DATE IN I8MDYY FORMAT.
-* FIRST IT USES THE DAYMD FUNCTION TO CONVERT HIRE_DATE
-* TO A NUMBER OF DAYS.
-* THEN IT USES THE DTMDY FUNCTION TO CONVERT THIS NUMBER OF
-* DAYS TO I8MDYY FORMAT
-*
DEFINE FILE EMPLOYEE
NEWF/I8 WITH EMP_ID=DAYMD(HIRE_DATE,NEWF);
NEW_HIRE_DATE/I8MDYY WITH EMP_ID=DTMDY(NEWF,NEW_HIRE_DATE);
END
TABLE FILE EMPLOYEE
PRINT HIRE_DATE NEW_HIRE_DATE
BY FN BY LN
WHERE DEPARTMENT EQ 'MIS'
END

The output is:
FIRST_NAME LAST_NAME HIRE_DATE NEW_HIRE_DATE
---------- --------- --------- -------------
BARBARA CROSS 81/11/02 11/02/1981
DIANE JONES 82/05/01 05/01/1982
JOHN MCCOY 81/07/01 07/01/1981
MARY GREENSPAN 82/04/01 04/01/1982
 SMITH 81/07/01 07/01/1981
ROSEMARIE BLACKWOOD 82/04/01 04/01/1982

Date and Time Functions

5-46 Information Builders

GREGDT: Converting From Julian to Gregorian Format
Available Operating Systems: All

Available Languages: reporting, Maintain

The GREGDT function converts dates in Julian format to year-month-day format. Dates
in Julian format are five- or seven-digit numbers. The first two or four digits are the year;
the last three digits are the number of the day counting from January 1. For example,
January 1, 1999 in Julian format is either 99001 or 1999001.

Depending on the format of the output, GREGDT converts a Julian date to either YMD
or YYMD format, using the DEFCENT and YRTHRESH settings.

GREGDT returns dates in the following format:

DATEFNS setting I6 or I7 format I8 format or greater

ON

YMD YYMD

OFF YMD YMD

Syntax How to Convert Julian Format Dates to Gregorian Format
GREGDT(indate, outfield)

where:
indate

Numeric

Is the Julian date, which is truncated to an integer before conversion. Each value
must be a 5- or 7-digit number after truncation. The first two or four digits represent
the year, the last three digits must be between 001 and 365 (366 for a leap year). If
the date is invalid, the function returns a 0.

outfield

I6 or larger

Is the name of the field to which the date in year-month-day format is returned, or
the format of the output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

 Using Legacy Date Functions

Using Functions 5-47

Example Converting a Date to a Julian and a Gregorian Date
In this example, GREGDT takes the argument JULIAN and converts it to YYMD
(Gregorian) format.
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND
COMPUTE JULIAN/I5 = JULDAT(HIRE_DATE, JULIAN); AND
COMPUTE GREG_DATE/I8 = GREGDT(JULIAN, 'I8');
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:
LAST_NAME FIRST_NAME HIRE_DATE JULIAN GREG_DATE
--------- ---------- --------- ------ ---------
BANNING JOHN 82/08/01 82213 19820801
IRVING JOAN 82/01/04 82004 19820104
MCKNIGHT ROGER 82/02/02 82033 19820202
ROMANS ANTHONY 82/07/01 82182 19820701
SMITH RICHARD 82/01/04 82004 19820104
STEVENS ALFRED 80/06/02 80154 19800602

Notice that GREGDT determines the century (using the DEFCENT and YRTHRESH
settings).

JULDAT: Converting a Date From Gregorian to Julian Format
Available Operating Systems: All

Available Languages: reporting, Maintain

The JULDAT function converts a date from year-month-day format to Julian (year-day)
format. A date in Julian format is a five- or seven-digit number. The first two or four
digits are the year, the last three digits are the number of the day counting from January
1. For example, January 1, 1999 in Julian format is either 99001 or 1999001.

Depending on the format of the output, JULDAT uses the DEFCENT and YRTHRESH
parameter settings to convert a date to either YYNNN or YYYYNNN format.

JULDAT returns dates in the following format:

DATEFNS setting I5 or I6 format I7 format or greater

ON

YYNNN YYYYNNN (JULDAT uses
the DEFCENT and
YRTHRESH settings to
determine the century, if
necessary).

OFF YYNNN YYNNN

Date and Time Functions

5-48 Information Builders

Syntax How to Convert a Gregorian Date to a Julian Date
JULDAT(indate, outfield)

where:
indate

Numeric

Is the date or field containing the date in year-month-day format (YMD or YYMD).
outfield

Integer at least I5

Is the field to which the Julian date is returned, or the format of the output value
enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Converting a Gregorian Date to a Julian Date
In this example, JULDAT takes the argument HIRE_DATE and converts it to Julian
format.
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND
COMPUTE JULIAN/I7 = JULDAT(HIRE_DATE, JULIAN);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:
LAST_NAME FIRST_NAME HIRE_DATE JULIAN
--------- ---------- --------- ------
BANNING JOHN 82/08/01 1982213
IRVING JOAN 82/01/04 1982004
MCKNIGHT ROGER 82/02/02 1982033
ROMANS ANTHONY 82/07/01 1982182
SMITH RICHARD 82/01/04 1982004
STEVENS ALFRED 80/06/02 1980154

Notice that JULDAT determines the century (using the DEFCENT and YRTHRESH
settings).

 Using Legacy Date Functions

Using Functions 5-49

YM: Calculating Elapsed Months
Available Operating Systems: All

Available Languages: reporting, Maintain

The YM function calculates the number of months that elapse between two dates. The
dates must be in year-month format. You can convert a date to this format by using the
CHGDAT function or the EDIT function.

Syntax How to Calculate Elapsed Months
YM(fromdate, todate, outfield)

where:
fromdate

Numeric

Is the starting date in year-month format (for example, I4YM). If the date is not
valid, the function returns a 0.

todate

Numeric

Is the ending date in year-month format. If the date is not valid, the function returns a
0.

outfield

Integer

Is the name of the field to which the number of months between the two dates is
returned, or the format of the output value enclosed in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Tip:
If the input date is in integer year-month-day format (I6YMD or I8YYMD), simply divide the
date by 100 to convert to year-month format and set the result to an integer. This causes
the day portion of the date, which is now after the decimal point, to be dropped.

Date and Time Functions

5-50 Information Builders

Example Calculating the Difference in Months Between Two Dates
In the following example, YM takes the arguments HIRE_DATE/100 and
DAT_INC/100, calculates the difference in months between the two dates, and stores the
results in MONTHS_HIRED.

Note that the COMPUTE expression converts the dates from year-month-day to
year-month format by dividing the dates by 100.
TABLE FILE EMPLOYEE
PRINT DAT_INC AS 'RAISE DATE' AND COMPUTE
HIRE_MONTH/I4YM = HIRE_DATE/100; NOPRINT AND COMPUTE
MONTH_INC/I4YM = DAT_INC/100; NOPRINT AND COMPUTE
MONTHS_HIRED/I3 = YM(HIRE_MONTH, MONTH_INC, 'I3');
BY LAST_NAME BY FIRST_NAME BY HIRE_DATE
IF MONTHS_HIRED NE 0
WHERE DEPARTMENT EQ 'MIS';
END

The output is:
LAST_NAME FIRST_NAME HIRE_DATE RAISE DATE MONTHS_HIRED
--------- ---------- --------- ---------- ------------
CROSS BARBARA 81/11/02 82/04/09 5
GREENSPAN MARY 82/04/01 82/06/11 2
JONES DIANE 82/05/01 82/06/01 1
MCCOY JOHN 81/07/01 82/01/01 6
SMITH MARY 81/07/01 82/01/01 6

Using Functions 6-1

CHAPTER 6

Format Conversion Functions

Topics:
• Alphabetical List of Format

Conversion Functions

Format conversion functions convert fields from one format to
another.

Format Conversion Functions

6-2 Information Builders

ATODBL: Converting an Alphanumeric String to
Double-Precision Format

Available Operating Systems: OS/390, VM/CMS

Available Languages: reporting, Maintain

The ATODBL function converts a number from alphanumeric to double-precision
format.

The ATODBL function is useful when executing a -RUN command in Dialogue
Manager. All numeric arguments in Dialogue Manager are stored in alphanumeric
format. However, these arguments must be converted to double-precision format for use
with a function. The -SET command automatically converts these arguments, but the
-RUN command does not. Therefore, you must convert each numeric argument into
double-precision format and store it in a Dialogue Manager variable, which is used as a
function argument.

For other applications, the EDIT function performs this conversion. Since the EDIT
function cannot store double-precision numbers in Dialogue Manager variables, you must
call the ATODBL function to convert the arguments.

Procedure How to Convert an Alphanumeric String to Double-Precision
Format With the -RUN Command
To use the ATODBL function in Dialogue Manager, perform these steps:

1. Define the output variable as 8 bytes long. The syntax is
-SET &outfield = '12345678';

where:
&outfield

Is the output variable. The variable name must be eight characters long, enclosed
in single quotation marks.

2. Call the ATODBL function from an operating system -RUN command. The syntax is
-{CMS|TSO|MVS} RUN ATODBL, number, inlength, &outfield

where:
CMS|TSO|MVS

Is the operating system.
number

Alphanumeric

Is the number you want to convert. This can be a numeric constant, or a variable
that contains the number. The number can be up to 15 bytes long and can
contain a sign and a decimal point but no other character; if it does, the function
returns a 0.

 ATODBL: Converting an Alphanumeric String to Double-Precision Format

Using Functions 6-3

inlength

Alphanumeric

Is the number of bytes in number. The maximum value is 15.

Note: This must be a character string.
outfield

A8

Is the variable defined in step 1.

Syntax How to Convert an Alphanumeric String to Double-Precision
Format From a FOCUS Command
ATODBL(number, inlength, outfield)

where:
number

Alphanumeric

Is the number you want to convert. This can be a numeric constant, or a field or
variable that contains the number. The number can be up to 15 bytes long and can
contain a sign and a decimal point but no other characters; if it does, the function
returns a 0.

inlength

Alphanumeric

Is the number of bytes in number. The maximum value is 15. If you are specifying
this field as a numeric constant, enclose it in single quotation marks.

outfield

Double-Precision

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Format Conversion Functions

6-4 Information Builders

Example Converting an Alphanumeric Value to a Double-Precision
Number With MODIFY
In the following example, the Master File contains the MISSING attribute for the
CURR_SAL field. If you do not enter a value for this field, it is interpreted as the default
value, a period.
FILENAME=EMPLOYEE, SUFFIX=FOC
SEGNAME=EMPINFO, SEGTYPE=S1
 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
 .
 .
 .
 FIELDNAME=CURR_SAL, ALIAS=CSAL,FORMAT=D12.2M, MISSING=ON,$
 .
 .
 .

In the following procedure, ATODBL converts the value entered for TCSAL to
double-precision format.
MODIFY FILE EMPLOYEE
COMPUTE TCSAL/A12=;
PROMPT EID
MATCH EID
ON NOMATCH REJECT
ON MATCH TYPE "EMPLOYEE <D.LAST_NAME <D.FIRST_NAME"
ON MATCH TYPE "ENTER CURRENT SALARY OR 'N/A' IF NOT AVAILABLE"
ON MATCH PROMPT TCSAL
ON MATCH COMPUTE
CSAL MISSING ON=IF TCSAL EQ 'N/A' THEN MISSING
 ELSE ATODBL(TCSAL,'12','D12.2');
ON MATCH TYPE "SALARY NOW <CSAL"
DATA

 ATODBL: Converting an Alphanumeric String to Double-Precision Format

Using Functions 6-5

A sample execution follows:
 EMPLOYEEFOCUS A ON 11/14/96 AT 13.42.55
 DATA FOR TRANSACTION 1

 EMP_ID =
071382660
 EMPLOYEE STEVENS ALFRED
 ENTER CURRENT SALARY OR 'N/A' IF NOT AVAILABLE
 TCSAL =
n/a
 SALARY NOW
 DATA FOR TRANSACTION 2

 EMP_ID =
112847612
 EMPLOYEE SMITH MARY
 ENTER CURRENT SALARY OR 'N/A' IF NOT AVAILABLE
 TCSAL =
45000
 SALARY NOW $45,000.00
 DATA FOR TRANSACTION 3

 EMP_ID =
end
 TRANSACTIONS: TOTAL = 2 ACCEPTED= 2 REJECTED= 0
 SEGMENTS: INPUT = 0 UPDATED = 0 DELETED = 0

The procedure processes as follows:

1. For the first transaction, the procedure prompts for an employee ID. 071382660 is
entered.

2. The procedure displays the last and first name of the employee, STEVENS
ALFRED.

3. Then it prompts you for a current salary. N/A is entered.

4. A period displays.

5. For the second transaction, the procedure prompts you for an employee ID.
112847612 is entered.

6. The procedure displays the last and first name of the employee, SMITH MARY.

7. Then it prompts you for a current salary. 45000 is entered.

8. $45,000.00 displays.

Format Conversion Functions

6-6 Information Builders

Example Converting an Alphanumeric Field to Double-Precision Format
In this example, ATODBL converts the EMP_ID field into double-precision format and
stores the result in D_EMP_ID.
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME AND
EMP_ID AND
COMPUTE D_EMP_ID/D12.2 = ATODBL(EMP_ID, '09', D_EMP_ID);
WHERE DEPARTMENT EQ 'MIS';
END

The output is:
LAST_NAME FIRST_NAME EMP_ID D_EMP_ID
--------- ---------- ------ --------
SMITH MARY 112847612 112,847,612.00
JONES DIANE 117593129 117,593,129.00
MCCOY JOHN 219984371 219,984,371.00
BLACKWOOD ROSEMARIE 326179357 326,179,357.00
GREENSPAN MARY 543729165 543,729,165.00
CROSS BARBARA 818692173 818,692,173.00

EDIT: Converting the Format of a Field
Available Operating Systems: OS/390, UNIX, VM/CMS, Windows NT/2000

Available Languages: reporting

The EDIT function converts an alphanumeric field that contains numeric characters to
numeric format, or converts a numeric field to alphanumeric format. This is useful when
you need to manipulate a field using a command that requires a particular format.

When you use EDIT to assign the converted value to a field, the format of the new field
must correspond to the format of the returned value. For example, if you use EDIT to
convert a numeric field to alphanumeric format, and then assign the resulting value to an
alphanumeric field, you must give the new field an alphanumeric format as follows:
DEFINE ALPHAPRICE/A6 = EDIT(PRICE);

When the EDIT function encounters a symbol, it deals with it in the following way:

• When converting an alphanumeric field to numeric format, a sign or decimal point in
the field is acceptable and remains in the value stored in the numeric field.

• When converting a floating-point or packed-decimal field to alphanumeric format,
EDIT removes the sign, the decimal point, and any number to the right of the
decimal point. It then right-justifies the remaining digits and adds leading zeros to
the specified field length. Also, converting a number with more than nine significant
digits in floating-point or packed-decimal format may produce an incorrect result.

The EDIT function can also extract characters from or add characters to an alphanumeric
string. For more information, see Chapter 3, Character Functions.

 EDIT: Converting the Format of a Field

Using Functions 6-7

Syntax How to Convert Field Formats
EDIT(fieldname);

where:
fieldname

Alphanumeric or Numeric

Is the field name enclosed in parentheses.

Example Converting From Numeric Format to Alphanumeric Format
In the following example, EDIT converts HIRE_DATE to alphanumeric format.
CHGDAT is then able to use the field, which it expects to be in alphanumeric format.
TABLE FILE EMPLOYEE
PRINT HIRE_DATE AND COMPUTE
ALPHA_HIRE/A17 = EDIT(HIRE_DATE); NOPRINT AND COMPUTE
HIRE_MDY/A17 = CHGDAT('YMD', 'MDYYX',ALPHA_HIRE,'A17');
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS'
END

The output is:
LAST_NAME FIRST_NAME HIRE_DATE HIRE_MDY
--------- ---------- --------- --------
BLACKWOOD ROSEMARIE 82/04/01 APRIL 01 1982
CROSS BARBARA 81/11/02 NOVEMBER 02 1981
GREENSPAN MARY 82/04/01 APRIL 01 1982
JONES DIANE 82/05/01 MAY 01 1982
MCCOY JOHN 81/07/01 JULY 01 1981
SMITH MARY 81/07/01 JULY 01 1981

Format Conversion Functions

6-8 Information Builders

FTOA: Converting a Number to Alphanumeric
Format

Available Operating Systems: All

Available Languages: reporting, Maintain

The FTOA function converts a number up to 16 digits long from numeric format to
alphanumeric format. It retains the decimal positions of a number and right-justifies it
with leading spaces. You can also add edit options to a number converted by FTOA.

Syntax How to Convert a Number to Characters
FTOA(number, '(format)', outfield)

where:
number

Numeric

Is the number to be converted. This can be the number, or the field containing the
number.

'(format) '

Alphanumeric

Is the format of the number as it is stored in numeric format, enclosed in both single
quotation marks and parentheses. Only single-precision floating point and
double-precision formats are supported. Include any edit options that you want to
appear in the output.

If you are using a field for this argument, specify the field name without quotation
marks or parentheses. The values in the field must be enclosed in parentheses.

outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The length of this argument must be greater than the
length of number and must account for edit options and a possible negative sign. The
D format automatically supplies commas.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

 HEXBYT: Converting a Number to a Character

Using Functions 6-9

Example Converting From Numeric to Alphanumeric Format
In this example, FTOA converts the GROSS field from double-precision to alphanumeric
format, and stores the result in ALPHA_GROSS.
TABLE FILE EMPLOYEE
PRINT GROSS AND COMPUTE
ALPHA_GROSS/A14 = FTOA(GROSS, '(D12.2)', ALPHA_GROSS);
BY HIGHEST 1 PAY_DATE NOPRINT
BY LAST_NAME
WHERE GROSS GT 800 AND GROSS LT 2300
END

The output is:
LAST_NAME GROSS ALPHA_GROSS
--------- ----- -----------
BLACKWOOD $1,815.00 1,815.00
CROSS $2,255.00 2,255.00
IRVING $2,238.50 2,238.50
JONES $1,540.00 1,540.00
MCKNIGHT $1,342.00 1,342.00
ROMANS $1,760.00 1,760.00
SMITH $1,100.00 1,100.00
STEVENS $916.67 916.67

HEXBYT: Converting a Number to a Character
Available Operating Systems: AS/400, HP, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

The HEXBYT function obtains the ASCII or EBCDIC character equivalent of a decimal
integer value. This function returns a single alphanumeric character in the ASCII or
EBCDIC character set. You can use this function to produce characters that are not on
your keyboard, similar to the CTRAN function.

The display of special characters depends upon your software and hardware; not all
special characters may display. Printable EBCDIC and ASCII characters and their integer
equivalents are listed in character charts. If you are using the Hot Screen facility, some
unusual characters cannot be displayed. If Hot Screen does not support the character you
chose, enter the commands
SET SCREEN = OFF
RETYPE

and redisplay the output which will appear as regular terminal output.

Format Conversion Functions

6-10 Information Builders

Syntax How to Convert a Number to a Character
HEXBYT(input, output)

where:
input

Numeric

Is the decimal value to be translated to a single character. A value greater than 255 is
treated as the remainder of input divided by 256.

output

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Determining the Decimal Value of a Character
In this example, HEXBYT converts LAST_INIT_CODE into a letter and stores the result
in LAST_INIT.
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND
COMPUTE LAST_INIT_CODE/I3 = BYTVAL(LAST_NAME, 'I3');
COMPUTE LAST_INIT/A1 = HEXBYT(LAST_INIT_CODE, LAST_INIT);
WHERE DEPARTMENT EQ 'MIS';
END

The output for an ASCII platform is:
LAST_NAME LAST_INIT_CODE LAST_INIT
--------- -------------- ---------
SMITH 83 S
JONES 74 J
MCCOY 77 M
BLACKWOOD 66 B
GREENSPAN 71 G
CROSS 67 C

The output for an EBCDIC platform is:
LAST_NAME LAST_INIT_CODE LAST_INIT
--------- -------------- ---------
SMITH 226 S
JONES 209 J
MCCOY 212 M
BLACKWOOD 194 B
GREENSPAN 199 G
CROSS 195 C

 HEXBYT: Converting a Number to a Character

Using Functions 6-11

Example Inserting Braces in S/390
In the following example, HEXBYT converts the value 192 into its character equivalent
which is a left brace, and the value 208 to its character equivalent which is a right brace.
If the value of CURR_SAL is less than 12000, the value in LAST_NAME is enclosed in
braces.
DEFINE FILE EMPLOYEE
BRACE/A17 = HEXBYT(192, 'A1') | LAST_NAME | HEXBYT(208, 'A1');
BNAME/A17 = IF CURR_SAL LT 12000 THEN BRACE
 ELSE LAST_NAME;
END
TABLE FILE EMPLOYEE
PRINT BNAME CURR_SAL BY EMP_ID
END

The output is:
EMP_ID BNAME CURR_SAL
------ ----- --------
071382660 {STEVENS } $11,000.00
112847612 SMITH $13,200.00
117593129 JONES $18,480.00
119265415 {SMITH } $9,500.00
119329144 BANNING $29,700.00
123764317 IRVING $26,862.00
126724188 ROMANS $21,120.00
219984371 MCCOY $18,480.00
326179357 BLACKWOOD $21,780.00
451123478 MCKNIGHT $16,100.00
543729165 {GREENSPAN } $9,000.00
818692173 CROSS $27,062.00

Format Conversion Functions

6-12 Information Builders

ITONUM: Converting a Large Binary Integer to
Double-Precision Format

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The ITONUM function converts large binary integers in a non-FOCUS data source to
double-precision format. Some programming languages and some non-FOCUS data
storage systems use large binary integer formats. However, large binary integers (more
than 4 bytes in length) are not supported in the Master File syntax so require conversion
to double-precision format. The user specifies how many of the rightmost bytes in the
input string are significant, and the result is an 8-byte double-precision field.

Syntax How to Convert Large Binary Integers to Double-Precision
Format
ITONUM(maxbytes, infield, outfield)

where:
maxbytes

Numeric

Is the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 ignores the left-most 3 bytes.

6 ignores the left-most 2 bytes.

7 ignores the left-most byte.
infield

A8

Is the field that contains the binary number. Both the USAGE and ACTUAL formats
of the field must be A8.

outfield

Numeric

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The format must be Dn or Dn.d.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

 ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

Using Functions 6-13

Example Converting a Large Binary Integer to Double-Precision Format
Suppose a binary number in an external file has the following COBOL format:
PIC 9(8)V9(4) COMP

It is defined in the EUROCAR Master File as a field called BINARYFLD. Its field
formats are USAGE=A8 and ACTUAL=A8, since its length is greater than 4 bytes.

The following request converts the field to double-precision format:
DEFINE FILE EUROCAR
MYFLD/D12.2 = ITONUM(6, BINARYFLD, MYFLD);
END
TABLE FILE EUROCAR
PRINT MYFLD BY CAR
END

ITOPACK: Converting a Large Binary Integer to
Packed-Decimal Format

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The ITOPACK function converts large binary integers in a non-FOCUS data source to
packed-decimal format. Some programming languages and some non-FOCUS data
storage systems use double-word binary integer formats. These are similar to the
single-word binary integers used by FOCUS, but they allow larger numbers. However,
large binary integers (more than 4 bytes in length) are not supported in the Master File
syntax so require conversion to packed format. The user specifies how many of the
rightmost bytes in the input string are significant, and the output is an 8-byte packed field
of up to 15 significant numeric positions (for example, P15 or P16.d).

Limit:
For a field defined as ‘PIC 9(15) COMP’ or the equivalent (15 significant digits), the
maximum number that can be translated is 167,744,242,712,576.

Format Conversion Functions

6-14 Information Builders

Syntax How to Convert a Large Binary Integer to Packed-Decimal
Format
ITOPACK(maxbytes, infield, outfield)

where:
maxbytes

Numeric

Is the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5 ignores the left-most 3 bytes (up to 11 significant points).

6 ignores the left-most 2 bytes (up to 14 significant points).

7 ignores the left-most byte (up to 15 significant points).
infield

A8

Is the field that contains the binary number. Both the USAGE and ACTUAL formats
of the field must be A8.

outfield

Numeric

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The format must be specified as Pn or Pn.d.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Converting a Large Binary Integer to Packed-Decimal Format
Suppose a binary number in an external file has the following COBOL format:
PIC 9(8)V9(4) COMP

It is defined to FOCUS in the EUROCAR Master File as a field called BINARYFLD. Its
field formats are USAGE=A8 and ACTUAL=A8, since its length is greater than 4 bytes.

The following request converts the field to packed decimal :
DEFINE FILE EUROCAR
PACKFLD/P14.4 = ITOPACK(6, BINARYFLD, PACKFLD);
END
TABLE FILE EUROCAR
PRINT PACKFLD BY CAR
END

 ITOZ: Converting a Number to Zoned Format

Using Functions 6-15

ITOZ: Converting a Number to Zoned Format
Available Operating Systems: AS/400, HP, OpenVMS, OS/390, UNIX, VM/CMS,
Windows NT/2000

Available Languages: reporting, Maintain

The ITOZ function converts numbers in numeric format to zoned format. Although a
request cannot process zoned numbers, it can write zoned fields to extract files for use by
external programs.

Syntax How to Convert to Zoned Format
ITOZ(outlength, number, outfield)

where:
outlength

Numeric

Is the length of number in bytes. The maximum number of bytes is 15. The last byte
includes the sign.

number

Numeric

Is the number to be converted, or the field that contains the number. The number is
truncated to an integer before it is converted.

outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Format Conversion Functions

6-16 Information Builders

Example Converting a Number to Zoned Format
The following request prepares an extract file containing employee IDs and salaries in
zoned format for a COBOL program. The request is:
DEFINE FILE EMPLOYEE
ZONE_SAL/A8 = ITOZ(8, CURR_SAL, ZONE_SAL);
END

TABLE FILE EMPLOYEE
PRINT CURR_SAL ZONE_SAL BY EMP_ID
ON TABLE SAVE AS SALARIES
END

The resulting extract file is:
NUMBER OF RECORDS IN TABLE= 12 LINES= 12

EBCDIC RECORD NAMED SALARIES
FIELDNAME ALIAS FORMAT LENGTH

EMP_ID EID A9 9
CURR_SAL CSAL D12.2M 12
ZONE_SAL A8 8

TOTAL 29

DCB USED WITH FILE SALARIES IS DCB=(RECFM=FB,LRECL=00029,BLKSIZE=00580)

If you remove the SAVE command, the output is:
EMP_ID CURR_SAL ZONE_SAL
------ -------- --------
071382660 $11,000.00 0001100{
112847612 $13,200.00 0001320{
117593129 $18,480.00 0001848{
119265415 $9,500.00 0000950{
119329144 $29,700.00 0002970{
123764317 $26,862.00 0002686B
126724188 $21,120.00 0002112{
219984371 $18,480.00 0001848{
326179357 $21,780.00 0002178{
451123478 $16,100.00 0001610{
543729165 $9,000.00 0000900{
818692173 $27,062.00 0002706B

Note: The left brace in EBCIDIC is C0; this indicates a positive sign and a final digit of
0. The capital B in EBCIDIC is C2; this indicates a positive sign and a final digit of 2.

 PCKOUT: Writing Packed Numbers of Different Lengths

Using Functions 6-17

PCKOUT: Writing Packed Numbers of Different
Lengths

Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The PCKOUT function enables a request to write packed numbers of different lengths to
an extract file. When a request saves a packed field in an extract file, it writes it as an 8-
or 16-byte field regardless of its format specifications. With the PCKOUT function, you
can vary the field’s length between 1 to 16 bytes.

Syntax How to Write Packed Numbers of Different Lengths
PCKOUT(infield, outlength, outfield)

where:
infield

Numeric

Is the input field that contains the values. The field can be in packed, integer,
floating-point or double-precision format. If the field is not in integer format, its
values are rounded to the nearest integer.

outlength

Numeric

Is the length of outfield from 1 to 16 bytes.
outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The function returns the field as alphanumeric although it
contains packed data.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Format Conversion Functions

6-18 Information Builders

Example Writing Packed Numbers of Different Lengths
In the following example, PCKOUT converts the CURR_SAL field to a 5 byte packed
field and stores the results in SHORT_SAL.
DEFINE FILE EMPLOYEE
SHORT_SAL/A5 = PCKOUT(CURR_SAL, 5, SHORT_SAL);
END
TABLE FILE EMPLOYEE
PRINT LAST_NAME SHORT_SAL HIRE_DATE
ON TABLE SAVE
END

The output is:
>
 NUMBER OF RECORDS IN TABLE= 12 LINES= 12

 EBCDIC RECORD NAMED SAVE
 FIELDNAME ALIAS FORMAT LENGTH

 LAST_NAME LN A15 15
 SHORT_SAL A5 5
 HIRE_DATE HDT I6YMD 6

 TOTAL 26
 DCB USED WITH FILE SAVE IS DCB=(RECFM=FB,LRECL=00026,BLKSIZE=00520)

 UFMT: Converting Alphanumeric to Hexadecimal

Using Functions 6-19

UFMT: Converting Alphanumeric to Hexadecimal
Available Operating Systems: AS/400, OpenVMS, OS/390, VM/CMS

Available Languages: reporting, Maintain

The UFMT function converts characters in an alphanumeric field to their hexadecimal
(HEX) representation. This function is useful for examining data of unknown format. As
long as the length of the data is known, its content can be examined.

Syntax How to Convert Alphanumeric to Hexadecimal
UFMT(string, inlength, outfield)

where:
string

Alphanumeric

Is the value to be converted. This can be an alphanumeric string enclosed in single
quotation marks, or the field that contains the string.

inlength

Numeric

Is the length of string.
outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The format of outfield must be alphanumeric and have a
length that is twice as long as inlength.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Format Conversion Functions

6-20 Information Builders

Example Converting an Alphanumeric Field to Hexadecimal
In the following example, UFMT converts each value in JOBCODE to its hexadecimal
representation, and stores the result in the HEXCODE field.
DEFINE FILE JOBFILE
HEXCODE/A6 = UFMT(JOBCODE, 3, HEXCODE);
END
TABLE FILE JOBFILE
PRINT JOBCODE HEXCODE
END

The output is:
JOBCODE HEXCODE
------- -------
A01 C1F0F1
A02 C1F0F2
A07 C1F0F7
A12 C1F1F2
A14 C1F1F4
A15 C1F1F5
A16 C1F1F6
A17 C1F1F7
B01 C2F0F1
B02 C2F0F2
B03 C2F0F3
B04 C2F0F4
B14 C2F1F4

Using Functions 7-1

CHAPTER 7

Numeric Functions

Topics:
• Alphabetical List of Numeric

Functions

Numeric functions perform calculations on numeric constants
and fields.

Numeric Functions

7-2 Information Builders

ABS: Calculating Absolute Value
Available Operating Systems: All

Available Languages: reporting, Maintain

The ABS function returns the absolute value of its argument.

Syntax How to Calculate Absolute Value
ABS(argument)

where:
argument

Numeric

Is the value for which the absolute value is returned. This can be the value, the name
of a field that contains the value, or an expression that returns the value. If you use
an expression, make sure you use parentheses as needed to ensure the correct order
of evaluation.

Example Calculating Absolute Value
In the following example, the COMPUTE command creates the DIFF field. The ABS
function then calculates the absolute value of DIFF.
TABLE FILE SALES
PRINT UNIT_SOLD AND DELIVER_AMT AND
COMPUTE DIFF/I5 = DELIVER_AMT - UNIT_SOLD; AND
COMPUTE ABS_DIFF/I5 = ABS(DIFF);
BY PROD_CODE
WHERE DATE LE '1017';
END

The output is:
PROD_CODE UNIT_SOLD DELIVER_AMT DIFF ABS_DIFF
--------- --------- ----------- ---- --------
B10 30 30 0 0
B17 20 40 20 20
B20 15 30 15 15
C17 12 10 -2 2
D12 20 30 10 10
E1 30 25 -5 5
E3 35 25 -10 10

 ASIS: Distinguishing Between a Blank and a Zero

Using Functions 7-3

ASIS: Distinguishing Between a Blank and a Zero
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, Windows NT/2000

Available Languages: reporting

The ASIS function distinguishes between a blank and a zero in Dialogue Manager. It
differentiates between numeric string constants or variables defined as numeric strings,
and fields defined simply as numeric.

For details on the ASIS function, see Chapter 3, Character Functions.

BAR: Producing Bar Charts
Available Operating Systems: AS/400, OpenVMS, OS/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The BAR function enables you to produce horizontal bar charts.

A bar chart plots bars consisting of repeating characters for a printed field. Optionally,
you can create a scale to clarify the meaning of a bar chart. This is done by replacing the
title of the column where the bar is stored with a scale.

Syntax How to Produce Bar Charts
BAR(barlength, infield, maxvalue, 'char', outfield)

where:
barlength

Numeric

Is the maximum length of the bar in characters. If this value is less than or equal to 0,
the function does not return a bar.

infield

Numeric

Is the field you wish to illustrate as a bar chart.
maxvalue

Numeric

Is the maximum value of a bar. This value should be greater than the maximum
value stored in infield. If an infield value is larger than maxvalue, the function uses
maxvalue and returns a bar at maximum length.

'char'

Alphanumeric

Is the repeating character that creates the bars enclosed in single quotation marks. If
more than one character is specified, only the first character is used to create the
bars.

Numeric Functions

7-4 Information Builders

outfield

Alphanumeric

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The output field must be large enough to contain a bar at
maximum length as defined by barlenth.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Creating a Bar Chart
In the following example, BAR creates a bar chart for the CURR_SAL field, and stores
the output in SAL_BAR. The bar created can be no longer than 30 characters long, and
the value it represents can be no greater than 30,000.
TABLE FILE EMPLOYEE
PRINT CURR_SAL AND COMPUTE
 SAL_BAR/A30 = BAR(30, CURR_SAL, 30000, '=', SAL_BAR);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:
LAST_NAME FIRST_NAME CURR_SAL SAL_BAR
--------- ---------- -------- -------

BANNING JOHN $29,700.00 ==============================
IRVING JOAN $26,862.00 ===========================
MCKNIGHT ROGER $16,100.00 ================

ROMANS ANTHONY $21,120.00 =====================
SMITH RICHARD $9,500.00 ==========
STEVENS ALFRED $11,000.00 ===========

 BAR: Producing Bar Charts

Using Functions 7-5

Example Creating a Bar Chart With a Scale
In the following example, BAR creates a bar chart for the CURR_SAL field. It then
replaces the field name SAL_BAR with a scale using the AS phrase.

Note: If you are running this request on a platform where the default font is proportional,
use a non-proportional font or issue SET STYLE=OFF before running the request.
SET STYLE=OFF

TABLE FILE EMPLOYEE
HEADING
"CURRENT SALARIES OF EMPLOYEES IN PRODUCTION DEPARTMENT"
"GRAPHED IN THOUSANDS OF DOLLARS"
" "
PRINT CURR_SAL AS 'CURRENT_SALARY'
AND COMPUTE
 SAL_BAR/A30 = BAR(30, CURR_SAL, 30000, '=', SAL_BAR);
 AS
' 5 10 15 20 25 30,----+----+----+----+----+----+'
BY LAST_NAME AS 'LAST_NAME'
BY FIRST_NAME AS 'FIRST_NAME'
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:
CURRENT SALARIES OF EMPLOYEES IN PRODUCTION DEPARTMENT

GRAPHED IN THOUSANDS OF DOLLARS
 5 10 15 20 25 30
LAST_NAME FIRST_NAME CURRENT_SALARY ----+----+----+----+----+----+

--------- ---------- -------------- ------------------------------
BANNING JOHN $29,700.00 ==============================
IRVING JOAN $26,862.00 ===========================

MCKNIGHT ROGER $16,100.00 ================
ROMANS ANTHONY $21,120.00 =====================
SMITH RICHARD $9,500.00 ==========

STEVENS ALFRED $11,000.00 ===========

Numeric Functions

7-6 Information Builders

CHKPCK: Validating Packed Fields
Available Operating Systems: All

Available Languages: reporting, Maintain

The CHKPCK function validates that packed fields (if they are available on your
platform) are in packed format. The function prevents data exceptions that occur when
requests read packed fields from files containing values that are not valid packed
numbers.

To use the CHKPCK function, use these steps:

1. Ensure that the Master File (FORMAT, USAGE, and ACTUAL attributes), or the
MODIFY FIXFORM command describing the file defines the field as alphanumeric,
not packed. This does not change the field data, which remains packed, but it enables
the request to read the data without causing data exceptions.

2. Call the CHKPCK function to examine the field. The function returns its output to a
field defined as packed. If the value it examines is a valid packed number, the
function returns the value; if it is not packed, it returns an error code.

Syntax How to Validate Packed Fields
CHKPCK(inlength, infield, error, outfield)

where:
inlength

Numeric

Is the length of the field to be validated. This can be between 1 and 16 bytes.
infield

Alphanumeric

Is the field to be validated. The field is described as alphanumeric, not packed.
error

Numeric

Is the error code that the function returns if a value is not packed. Choose an error
code outside the range of data. The error code is first truncated to an integer, then
converted to packed format. However, the error code may appear on a report with a
decimal point because of the format of the output field.

outfield

Packed

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

 CHKPCK: Validating Packed Fields

Using Functions 7-7

Example Validating Packed Data
First
Prepare a data source that includes invalid packed data. The following creates the
TESTPACK file, which contains the PACK_SAL field that is defined as an alphanumeric
field but contains packed data. The invalid data contained in TESTPACK is returned as
AAA.
DEFINE FILE EMPLOYEE
PACK_SAL/A8 = IF EMP_ID CONTAINS '123'
 THEN 'AAA' ELSE PCKOUT(CURR_SAL, 8, 'A8');
END

TABLE FILE EMPLOYEE
PRINT DEPARTMENT PACK_SAL BY EMP_ID
ON TABLE SAVE AS TESTPACK
END

The result is:
>
 NUMBER OF RECORDS IN TABLE= 12 LINES= 12

 {EBCDIC|ALPHANUMERIC} RECORD NAMED TESTPACK
 FIELDNAME ALIAS FORMAT LENGTH

 EMP_ID EID A9 9
 DEPARTMENT DPT A10 10
 PACK_SAL A8 8

TOTAL 27
[DCB USED WITH FILE TESTPACK IS DCB=(RECFM=FB,LRECL=00027,BLKSIZE=00540)]
>

Second
Create a Master File for the TESTPACK data source. Define the PACK_SAL field as
alphanumeric in the USAGE and ACTUAL attributes. The following is the Master File:
FILE = TESTPACK, SUFFIX = FIX
FIELD = EMP_ID ,ALIAS = EID,FORMAT = A9 ,ACTUAL = A9 ,$
FIELD = DEPARTMENT,ALIAS = DPT,FORMAT = A10,ACTUAL = A10,$
FIELD = PACK_SAL ,ALIAS = PS ,FORMAT = A8 ,ACTUAL = A8 ,$

Numeric Functions

7-8 Information Builders

Last
Create a report request that uses the CHKPCK function to validate the values in the
PACK_SAL field. The following validates the values in the PACK_SAL field, and stores
the output in the GOOD_PACK field. Values that are not in packed format will return the
error code -999.
DEFINE FILE TESTPACK
GOOD_PACK/P8CM = CHKPCK(8, PACK_SAL, -999, GOOD_PACK);
END

TABLE FILE TESTPACK
PRINT DEPARTMENT GOOD_PACK BY EMP_ID
END

The output is:
EMP_ID DEPARTMENT GOOD_PACK
------ ---------- ---------
071382660 PRODUCTION $11,000
112847612 MIS $13,200
117593129 MIS $18,480
119265415 PRODUCTION $9,500
119329144 PRODUCTION $29,700
123764317 PRODUCTION -$999
126724188 PRODUCTION $21,120
219984371 MIS $18,480
326179357 MIS $21,780
451123478 PRODUCTION -$999
543729165 MIS $9,000
818692173 MIS $27,062

DMOD, FMOD, and IMOD: Calculating the
Remainder From a Division

Available Operating Systems: All

Available Languages: reporting, Maintain

The MOD functions calculate the remainder from a division. There are three MOD
functions which differ in the format in which they return the remainder:

• DMOD returns the remainder as a decimal number.

• FMOD returns the remainder as a floating-point number.

• IMOD returns the remainder as an integer.

The three functions use the following formula:
remainder = dividend - INT(dividend/divisor) * divisor

 DMOD, FMOD, and IMOD: Calculating the Remainder From a Division

Using Functions 7-9

Syntax How to Calculate the Remainder From a Division
function(dividend, divisor, outfield)

where:
function

Is one of the following:

IMOD Returns the remainder as an integer.

FMOD Returns the remainder as a floating-point number.

DMOD Returns the remainder as a decimal number.
dividend

Numeric

Is the number being divided.
divisor

Numeric

Is the number dividing the dividend.
outfield

Numeric

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The format is determined by the result returned by the
specific function.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Calculating the Remainder of a Division
In the following example, IMOD divides ACCTNUMBER by 1000, and returns the
remainder to LAST3_ACCT.
TABLE FILE EMPLOYEE
PRINT ACCTNUMBER AND
COMPUTE LAST3_ACCT/I3L = IMOD(ACCTNUMBER, 1000, LAST3_ACCT);
BY LAST_NAME BY FIRST_NAME
WHERE (ACCTNUMBER NE 000000000) AND (DEPARTMENT EQ 'MIS');
END

The output is:

LAST_NAME FIRST_NAME ACCTNUMBER LAST3_ACCT
--------- ---------- ---------- ----------
BLACKWOOD ROSEMARIE 122850108 108
CROSS BARBARA 163800144 144
GREENSPAN MARY 150150302 302
JONES DIANE 040950036 036
MCCOY JOHN 109200096 096
SMITH MARY 027300024 024

Numeric Functions

7-10 Information Builders

EXP: Raising “e” to the Nth Power
Available Operating Systems: All

Available Languages: reporting, Maintain

The EXP function raises the value “e” (approximately 2.72) to any power you specify.
This function is the inverse of the LOG function, which returns an argument’s logarithm.

The EXP function calculates the answer by adding terms of an infinite series. If a term
adds less than .000001 percent to the sum, the function ends the calculation and returns
the result as a double-precision number.

Syntax How to Raise “e” to the Nth Power
EXP(power, outfield)

where:
power

Numeric

Is the power that “e” is being raised to.
outfield

Double-precision

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Raising “e” to the Nth Power
In the following example, EXP raises “e” to the power designated by the &POW
variable, specified as 3 here. The result is then rounded to the nearest integer with the .5
rounding constant.
-SET &POW = '3';
-SET &RESULT = EXP(&POW, 'D15.3') + 0.5;
-TYPE E TO THE &POW POWER IS APPROXIMATELY &RESULT

The output is:
E TO THE 3 POWER IS APPROXIMATELY 20

 EXPN: Evaluating a Number in Scientific Notation

Using Functions 7-11

EXPN: Evaluating a Number in Scientific Notation
Available Operating Systems: AS/400, OpenVMS, OS/390, Windows NT/2000

Available Languages: reporting

The EXPN function evaluates an argument expressed in scientific notation.

Syntax How to Evaluate a Number in Scientific Notation
EXPN(n.nn {E|D} {+|-} p)

where:
n.nn

Is a numeric constant that consists of a whole number component, followed by a
decimal point, followed by a fractional component.

{E|D}

Denotes scientific notation. E and D are interchangeable.
p

Is the power of 10 to which you want to raise the number. You may supply the actual
value, the name of a field that contains the value, or an expression that returns the
value. The expression can also invoke a function.

For example, you can use scientific notation to express 103 as:
1.03E+2

Then
EXPN(1.03+2)

returns 103 as the result.

Numeric Functions

7-12 Information Builders

INT: Finding the Greatest Integer
Available Operating Systems: All

Available Languages: reporting, Maintain

The INT function returns the integer part of an argument.

Syntax How to Calculate the Greatest Integer
INT(argument)

where:
argument

Numeric

Is the value on which the function operates. You may supply the actual value, the
name of a field that contains the value, or an expression that returns the value. If you
use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation.

Example Calculating the Greatest Integer in a Field
In the following example, INT returns the greatest integer in the DED_AMT field.
TABLE FILE EMPLOYEE
SUM DED_AMT AND COMPUTE
INT_DED_AMT/I9=INT(DED_AMT);
BY LAST_NAME BY FIRST_NAME
WHERE (DEPARTMENT EQ 'MIS') AND (PAY_DATE EQ 820730);
END

The output is:
LAST_NAME FIRST_NAME DED_AMT INT_DED_AMT
--------- ---------- ------- -----------
BLACKWOOD ROSEMARIE $1,261.40 1261
CROSS BARBARA $1,668.69 1668
GREENSPAN MARY $127.50 127
JONES DIANE $725.34 725
SMITH MARY $334.10 334

 LOG: Calculating the Natural Logarithm

Using Functions 7-13

LOG: Calculating the Natural Logarithm
Available Operating Systems: AS/400, HP, OpenVMS, OS/390, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The LOG function returns the natural logarithm of an argument.

Syntax How to Calculate the Natural Logarithm
LOG(argument)

where:
argument

Numeric

Is the value on which the function operates. You may supply the actual value, the
name of a field that contains the value, or an expression that returns the value. If you
use an expression, make sure you use parentheses as needed to ensure the correct
order of evaluation. If you enter an argument less than or equal to 0, LOG returns 0.

Example Calculating the Natural Logarithm
In the following example, LOG calculates the logarithm of the CURR_SAL field.
TABLE FILE EMPLOYEE
PRINT CURR_SAL AND COMPUTE
LOG_CURR_SAL/D12.2 = LOG(CURR_SAL);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'PRODUCTION';
END

The output is:
LAST_NAME FIRST_NAME CURR_SAL LOG_CURR_SAL
--------- ---------- -------- ------------
BANNING JOHN $29,700.00 10.30
IRVING JOAN $26,862.00 10.20
MCKNIGHT ROGER $16,100.00 9.69
ROMANS ANTHONY $21,120.00 9.96
SMITH RICHARD $9,500.00 9.16
STEVENS ALFRED $11,000.00 9.31

Numeric Functions

7-14 Information Builders

MAX and MIN: Finding the Maximum or Minimum
Value

Available Operating Systems: All

Available Languages: reporting, Maintain

The MAX and MIN functions return the maximum or minimum value, respectively, from
a list of arguments.

Syntax How to Find the Maximum or Minimum Value
{MAX|MIN} (argument1, argument2, ...)

where:
MAX

Returns the maximum value.
MIN

Returns the minimum value.
argument1, argument2

Numeric

Are the values on which the function operates. You may supply the actual value, the
name of a field that contains the value, or an expression that returns the value. If you
use an expression, use parentheses as needed to ensure the correct order of
evaluation.

Example Determining the Minimum Value
In the following example, MIN returns either the value from the ED_HRS field or the
value 30, whichever is lower.
TABLE FILE EMPLOYEE
PRINT ED_HRS AND COMPUTE
MIN_EDHRS_30/D12.2=MIN(ED_HRS, 30);
BY LAST_NAME BY FIRST_NAME
WHERE DEPARTMENT EQ 'MIS';
END

The output is:
LAST_NAME FIRST_NAME ED_HRS MIN_EDHRS_30
--------- ---------- ------ ------------
BLACKWOOD ROSEMARIE 75.00 30.00
CROSS BARBARA 45.00 30.00
GREENSPAN MARY 25.00 25.00
JONES DIANE 50.00 30.00
MCCOY JOHN .00 .00
SMITH MARY 36.00 30.00

 PRDNOR and PRDUNI: Generating Reproducible Random Numbers

Using Functions 7-15

PRDNOR and PRDUNI: Generating Reproducible
Random Numbers

Available Operating Systems: All

Available Languages: reporting, Maintain

The PRDNOR and PRDUNI functions generate reproducible random numbers:

• PRDNOR generates reproducible double-precision random numbers that are
normally distributed with an arithmetic mean of 0 and a standard deviation of 1. If
you use the PRDNOR function to generate a large set of numbers, it has the
following properties:

• The numbers in the set lie roughly on a bell curve, as shown in the following
figure. The bell curve is highest at the 0 mark, which means that there are more
numbers close to 0 than farther away.

Frequency
 of
Occurrence

Random Number Generated

-4 -3 -2 -1 0 1 2 3 4

• The average of the set is close to 0.

• The set can contain numbers of any size, but most of the numbers are between 3
and -3.

• PRDUNI generates reproducible double-precision random numbers uniformly
distributed between 0 and 1 (that is, any random number it generates has an equal
probability of being anywhere between 0 and 1).

Numeric Functions

7-16 Information Builders

Syntax How to Use PRDNOR and PRDUNI to Generate Random
Numbers
{PRDNOR|PRDUNI}(seed, outfield)

where:
PRDNOR

Generates reproducible normally distributed random numbers with an arithmetic
mean of 0 and a standard deviation of 1.

PRDUNI

Generates reproducible random numbers uniformly distributed between 0 and 1.
seed

Numeric

Is the seed or the field that contains the seed, up to nine bytes. The seed is truncated
to an integer. Using the same seed will always produce the same set of numbers.

Note: In the PRDUNI function, VM/CMS behavior differs from OS/390 behavior. In
VM/CMS, the seed number changes upon multiple executions as the function is
reloaded. In OS/390, the function is loaded once. To keep the function loaded for the
duration of the session, we recommend assigning the function to a temporary field
using a DEFINE command. The function remains loaded in memory until the
DEFINE is cleared.

outfield

Double-precision

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

 PRDNOR and PRDUNI: Generating Reproducible Random Numbers

Using Functions 7-17

Example Generating Reproducible Random Numbers
In this example, PRDNOR assigns random numbers and stores them in RAND. These
values are then used to randomly pick five employee records identified by the values in
the LAST NAME and FIRST NAME fields. The seed is 40. To produce a different set of
numbers, change the seed.
DEFINE FILE EMPLOYEE
RAND/D12.2 WITH LAST_NAME = PRDNOR(40, RAND);
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
BY HIGHEST 5 RAND
END

The output is:
RAND LAST_NAME FIRST_NAME
---- --------- ----------
1.38 STEVENS ALFRED
1.12 MCCOY JOHN
 .55 SMITH RICHARD
 .21 JONES DIANE
 .01 IRVING JOAN

Numeric Functions

7-18 Information Builders

RDNORM and RDUNIF: Generating Random Numbers
Available Operating Systems: All

Available Languages: reporting, Maintain

The RDNORM and RDUNIF functions generate random numbers:

• RDNORM generates double-precision random numbers that are normally distributed
with an arithmetic mean of 0 and a standard deviation of 1. If you use the RDNORM
function to generate a large set of numbers (between 1 and 32768), it has the
following properties:

• The numbers in the set lie roughly on a bell curve, as shown in the following
figure. The bell curve is highest at the 0 mark, which means that there are more
numbers close to 0 than farther away.

Frequency
 of
Occurrence

Random Number Generated

-4 -3 -2 -1 0 1 2 3 4

• The average of the set is close to 0.

• The set can contain numbers of any size, but most of the numbers are between 3
and -3.

• RDUNIF generates double-precision random numbers uniformly distributed between
0 and 1 (that is, any random number it generates has an equal probability of being
anywhere between 0 and 1).

 RDNORM and RDUNIF: Generating Random Numbers

Using Functions 7-19

Syntax How to Use RDNORM and RDUNIF to Generate Random
Numbers
{RDNORM|RDUNIF}(outfield)

where:
RDNORM

Generates normally distributed random numbers with an arithmetic mean of 0 and a
standard deviation of 1.

RDUNIF

Generates random numbers uniformly distributed between 0 and 1.
outfield

Double-precision

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

Example Generating Random Numbers
In this example, RDNORM assigns random numbers and stores them in RAND. These
values are then used to randomly choose five employee records identified by the values in
the LAST NAME and FIRST NAME fields.
DEFINE FILE EMPLOYEE
RAND/D12.2 WITH LAST_NAME = RDNORM(RAND);
END

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
BY HIGHEST 5 RAND
END

The request produces output similar to the following:
RAND LAST_NAME FIRST_NAME
---- --------- ----------
 .65 CROSS BARBARA
 .20 BANNING JOHN
 .19 IRVING JOAN
 .00 BLACKWOOD ROSEMARIE
-.14 GREENSPAN MARY

Numeric Functions

7-20 Information Builders

SQRT: Calculating the Square Root
Available Operating Systems: All

Available Languages: reporting, Maintain

The SQRT function calculates the square root of an argument.

Syntax How to Calculate the Square Root
SQRT(argument)

where:
argument

Numeric

Is the value for which the square root is calculated. You may supply the actual value,
the name of a field that contains the value, or an expression that returns the value. If
you use an expression, use parentheses as needed to ensure the correct order of
evaluation.

Example Calculating Square Root of Movies’ List Price
In the following example, SQRT calculates the square root of LISTPR.
TABLE FILE MOVIES
PRINT LISTPR AND COMPUTE
SQRT_LISTPR/D12.2 = SQRT(LISTPR);
BY TITLE
WHERE CATEGORY EQ 'MUSICALS';
END

The FOCUS output is:
TITLE LISTPR SQRT_LISTPR
----- ------ -----------
ALL THAT JAZZ 19.98 4.47
CABARET 19.98 4.47
CHORUS LINE, A 14.98 3.87
FIDDLER ON THE ROOF 29.95 5.47

Using Functions 8-1

CHAPTER 8

System Functions

Topics:
• Alphabetical List of System Functions

System functions call the operating system to obtain information
about the operating environment or to use a system service.

System Functions

8-2 Information Builders

FEXERR: Retrieving an Error Message
Available Operating Systems: AS/400, OpenVMS, S/390, UNIX, VM/CMS, Windows
NT/2000

Available Languages: reporting, Maintain

The FEXERR function retrieves an error message. This function is especially useful in
procedures using commands that suppress the display of output messages.

Error messages may consist of up to four lines of text; the first line contains the message
and the remaining three may contain a detailed explanation, if one exists. The FEXERR
function retrieves the first line of the error message.

Syntax How to Retrieve an Error Message
FEXERR(error, 'A72')

where:
error

Numeric

Is the error number, up to five digits long.
'A72'

Is the format of the output value, enclosed in single quotation marks. The format is
A72 because the maximum length of a FOCUS error message is 72 characters.

Note: In Maintain, you must supply the field name instead.

Example Retrieving an Error Message
In the following example, FEXERR retrieves the error message whose number is
contained in the &ERR variable, in this case 650. The result is stored in a field with the
format A72.
-SET &ERR = 650;
-SET &&MSGVAR = FEXERR(&ERR, 'A72');
-TYPE &&MSGVAR

The output is:
(FOC650) THE DISK IS NOT ACCESSED

 FINDMEM: Finding a Member of a Partitioned Data Set

Using Functions 8-3

FINDMEM: Finding a Member of a Partitioned Data
Set

Available Operating Systems: OS/390

Available Languages: reporting, Maintain

The FINDMEM function, used on OS/390 or batch only, determines if a specific member
of a partitioned data set (PDS) exists. This function is especially useful in Dialogue
Manager procedures.

In order to use this function, the PDS must be allocated to a ddname because the ddname
is specified in the function call. You can search multiple partitioned data sets with one
function call if the partitioned data sets are concatenated to one ddname.

Syntax How to Find a Member of a Partitioned Data Set
FINDMEM(ddname, member, outfield)

where:
ddname

A8

Is the ddname to which the PDS is allocated. This argument must be eight characters
long or be a variable. If you are using a literal for this argument, enclose it in single
quotation marks. If the literal is less than eight characters, pad it with trailing blanks.

member

A8

Is the member you are searching for. This argument must be eight characters long. If
you are using a literal for this argument that has less than eight characters, pad the
literal with trailing blanks.

outfield

A1

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The result is one of the following:

Y indicates the member exists in the PDS.

N indicates the member does not exist in the PDS.

E indicates an error occurred. This can occur because the data set is not allocated to
the ddname, or the data set allocated to the ddname is not a PDS (and may be a
sequential file).

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

System Functions

8-4 Information Builders

Example Finding the Member of a Partitioned Data Set
In the following example, FINDMEM searches for the EMPLOYEE Master File in the
PDS allocated to ddname MASTER, and returns the result to a field with the format A1.
-SET &FINDCODE = FINDMEM('MASTER ', 'EMPLOYEE', 'A1');
-IF &FINDCODE EQ 'N' GOTO NOMEM;
-IF &FINDCODE EQ 'E' GOTO NOPDS;
-TYPE MEMBER EXISTS, RETURN CODE = &FINDCODE
TABLE FILE EMPLOYEE
PRINT CURR_SAL BY LAST_NAME BY FIRST_NAME
WHERE RECORDLIMIT EQ 4
END
-EXIT
-NOMEM
-TYPE EMPLOYEE NOT FOUND IN MASTER FILE PDS
-EXIT
-NOPDS
-TYPE ERROR OCCURRED IN SEARCH
-TYPE CHECK IF FILE IS A PDS ALLOCATED TO DDNAME MASTER
-EXIT

The output is:
MEMBER EXISTS, RETURN CODE = Y
> NUMBER OF RECORDS IN TABLE= 4 LINES= 4

LAST_NAME FIRST_NAME CURR_SAL
--------- ---------- --------
JONES DIANE $18,480.00
SMITH MARY $13,200.00
 RICHARD $9,500.00
STEVENS ALFRED $11,000.00

 GETPDS: Determining if a Member of a Partitioned Data Set Exists

Using Functions 8-5

GETPDS: Determining if a Member of a Partitioned
Data Set Exists

Available Operating Systems: OS/390

Available Languages: reporting, Maintain

The GETPDS function determines if a specific member of a partitioned data set (PDS)
exists, and returns the PDS name. This function is especially useful in Dialogue Manager
procedures.

In order to use this function, the PDS must be allocated to a ddname because the ddname
is specified in the function call. You can search multiple partitioned data sets with one
function call if the partitioned data sets are concatenated to one ddname.

Note: The FINDMEM function is almost identical to the GETPDS function, except that
the GETPDS function provides either the PDS name or different status codes.

Syntax How to Determine if a Member Exists
GETPDS(ddname, member, outfield)

where:
ddname

A8

Is the ddname to which the PDS is allocated. This argument must be an eight
character literal enclosed in single quotation marks, or a variable that contains the
ddname. If the literal is less than eight characters long, you must pad it with trailing
blanks.

member

A8

Is the member you are searching for. This argument must be eight characters long. If
you are using a literal for this argument that has less than eight characters, you must
pad the literal with trailing blanks.

outfield

A44

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The value returned to outfield is one of the following:

PDS name is the PDS name that contains the specified member, if it exists.

*D is returned if the ddname is not assigned (allocated) to a data set.

*M is returned if the member does not exist in the PDS.

*E is returned if an error occurs. This can happen because the data set allocated to the
ddname is not a PDS (and may be a sequential file).

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

System Functions

8-6 Information Builders

Example Determining if a Member Exists
In the following example, GETPDS searches for the member specified by &MEMBER in
the PDS specified by &DDNAME, and returns the result to the &PNAME variable.
-SET &DDNAME = 'MASTER ';
-SET &MEMBER = 'EMPLOYEE';
-SET &PNAME = ' ';
-SET &PNAME = GETPDS(&DDNAME,&MEMBER,'A44');
-IF &PNAME EQ '*D' THEN GOTO DDNOAL;
-IF &PNAME EQ '*M' THEN GOTO MEMNOF;
-IF &PNAME EQ '*E' THEN GOTO DDERROR;
-*
-TYPE MEMBER &MEMBER IS FOUND IN
-TYPE THE PDS &PNAME
-TYPE ALLOCATED TO &DDNAME
-*
-EXIT
-DDNOAL
-*
-TYPE DDNAME &DDNAME NOT ALLOCATED
-*
-EXIT
-MEMNOF
-*
-TYPE MEMBER &MEMBER NOT FOUND UNDER DDNAME &DDNAME
-*
-EXIT
-DDERROR
-*
-TYPE ERROR IN GETPDS; DATA SET PROBABLY NOT A PDS.
-*
-EXIT

Output similar to the following is produced:
MEMBER EMPLOYEE IS FOUND IN
THE PDS USER1.MASTER.DATA
ALLOCATED TO MASTER

 GETPDS: Determining if a Member of a Partitioned Data Set Exists

Using Functions 8-7

Example Using GETPDS With TED
In the following example, GETPDS searches for the member specified by &MEMBER in
the PDS specified by &DDNAME, and returns the result to the value specified by
&PNAME. Then the TED editor enables you to edit the member. The ddnames are
allocated earlier in the session: the production PDS is allocated to the ddname MASTER;
your local PDS to ddname MYMASTER.
-* If the MASTER file in question is in the 'production' pds, it must
-* be copied to a 'local' pds, which has been allocated previously to the
-* ddname MYMASTER before any changes can be made.
-* Assume the MASTER in question is supplied via a -CRTFORM, with
-* a length of 8 characters, as &MEMBER
-*
-SET &DDNAME = 'MASTER ';
-SET &MEMBER = &MEMBER;
-SET &PNAME = ' ';
-SET &PNAME = GETPDS(&DDNAME,&MEMBER,'A44');
-IF &PNAME EQ '*D' OR '*M' OR '*E' THEN GOTO DDERROR;
-*
DYNAM ALLOC FILE XXXX DA -
 &PNAME MEMBER &MEMBER SHR
DYNAM COPY XXXX MYMASTER MEMBER &MEMBER
-RUN
TED MYMASTER(&MEMBER)
-EXIT
-*
-DDERROR
-*
-TYPE Error in GETPDS; Check allocation for &DDNAME for
-TYPE proper allocation.
-*
-EXIT

Earlier in the FOCUS session, allocate the ddnames:
> > tso alloc f(master) da('prod720.master.data') shr
> > tso alloc f(mymaster) da('user1.master.data') shr

System Functions

8-8 Information Builders

After you execute the procedure, specify the EMPLOYEE member. The member is
copied to your local PDS and you enter TED.
PLEASE SUPPLY VALUES REQUESTED

MEMBER= > employee

MYMASTER(EMPLOYEE) SIZE=37 LINE=0

00000 * * * TOP OF FILE * * *
00001 FILENAME=EMPLOYEE, SUFFIX=FOC
00002 SEGNAME=EMPINFO, SEGTYPE=S1
00003 FIELDNAME=EMP_ID, ALIAS=EID, FORMAT=A9, $
00004 FIELDNAME=LAST_NAME, ALIAS=LN, FORMAT=A15, $
00005 FIELDNAME=FIRST_NAME, ALIAS=FN, FORMAT=A10, $
00006 FIELDNAME=HIRE_DATE, ALIAS=HDT, FORMAT=I6YMD, $
00007 FIELDNAME=DEPARTMENT, ALIAS=DPT, FORMAT=A10, $

Example Using GETPDS With Query Commands
Suppose you wanted to review the attributes of the PDS that contains a specific member.
This Dialogue Manager procedure searches for the EMPLOYEE member in the PDS
allocated to the ddname MASTER and, based on its existence, allocates the PDS name to
the ddname TEMPMAST. Dialogue Manager system variables are used to display the
attributes.
-SET &DDNAME = 'MASTER ';
-SET &MEMBER = 'EMPLOYEE';
-SET &PNAME = ' ';
-SET &PNAME = GETPDS(&DDNAME,&MEMBER,'A44');
-IF &PNAME EQ '*D' OR '*M' OR '*E' THEN GOTO DDERROR;
-*
DYNAM ALLOC FILE TEMPMAST DA -
 &PNAME SHR
-RUN
-? MVS DDNAME TEMPMAST
-TYPE The data set attributes include:
-TYPE Data set name is: &DSNAME
-TYPE Volume is: &VOLSER
-TYPE Disposition is: &DISP
-EXIT
-*
-DDERROR
-TYPE Error in GETPDS; Check allocation for &DDNAME for
-TYPE proper allocation.
-*
-EXIT

 GETUSER: Retrieving a User ID

Using Functions 8-9

A sample execution follows:
> THE DATA SET ATTRIBUTES INCLUDE:
DATA SET NAME IS: USER1.MASTER.DATA
VOLUME IS: USERMO
DISPOSITION IS: SHR
>

When you execute this procedure, it searches the PDS allocated to ddname MASTER for
the member EMPLOYEE. Since the procedure locates the member, it displays the
attributes for the MASTER PDS.

GETUSER: Retrieving a User ID
Available Operating Systems: All

Available Languages: reporting, Maintain

The GETUSER function retrieves the user ID of the connected user.

In OS/390 FOCUS, it can also retrieve the name of an S/390 batch job if you run it from
the batch job. To retrieve a logon ID for MSO, use the MSOINFO function described in
the FOCUS for IBM Mainframe Multi-Session Option Installation and Technical
Reference Guide.

Syntax How to Retrieve a User ID
GETUSER(outfield)

where:
outfield

A8

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks. The field must be 8 bytes long.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

System Functions

8-10 Information Builders

Example Retrieving a User ID
In the following example, GETUSER retrieves the user ID of the person executing the
request.
DEFINE FILE EMPLOYEE
USERID/A8 WITH EMP_ID = GETUSER(USERID);
END

TABLE FILE EMPLOYEE
SUM CURR_SAL AS 'TOTAL SALARIES'
BY DEPARTMENT
HEADING
"SALARY REPORT RUN FROM USERID: <USERID"
" "
END

The output is:
SALARY REPORT RUN FROM USERID: USER1

DEPARTMENT TOTAL SALARIES
---------- --------------
MIS $108,002.00
PRODUCTION $114,282.00

HHMMSS: Returning the Current Time
Available Operating Systems: All

Available Languages: reporting, Maintain

The HHMMSS function retrieves the current time from the operating system and returns
the time as an eight-character string, separating the hours minutes and seconds with
periods for reporting and colons for Maintain.

For details on the HHMMSS functions, see Chapter 5, Date and Time Functions.

 MVSDYNAM: Passing a DYNAM Command to the Command Processor

Using Functions 8-11

MVSDYNAM: Passing a DYNAM Command to the
Command Processor

Available Operating Systems: OS/390

Available Languages: reporting, Maintain

The MVSDYNAM function transfers a FOCUS DYNAM command to the DYNAM
command processor. This is useful to pass allocation commands to the processor in
compiled MODIFY procedures after the CASE AT START command.

Syntax How to Pass a DYNAM Command to the Command Processor
MVSDYNAM(command, length, outfield)

where:
command

Alphanumeric

Is the DYNAM command. This can be the command enclosed in single quotation
marks, or a field or variable that contains the command. The function converts
lowercase input to uppercase.

length

Numeric

Is the length of the command in characters, between 1 and 256.
outfield

I4

Is the field to which the result is returned, or the format of the output value enclosed
in single quotation marks.

MVSDYNAM returns one of the following codes:

0 indicates the DYNAM command transferred and executed successfully.

positive number is the error number corresponding to a FOCUS error.

negative number is the error number corresponding to DYNAM failure.

Note: In Dialogue Manager, the format must be specified. In Maintain, the name of
the field must be specified.

System Functions

8-12 Information Builders

Example Passing a DYNAM Command to the Processor
In the following request, MVSDYNAM transfers the DYNAM FREE command to the
processor. Query commands display the results before and after the DYNAM FREE
command is specified. The successful return code of zero (0) is stored in the RES field.
-* THE RESULT OF ? TSO DDNAME CAR WILL BE BLANK AFTER ENTERING
-* 'FREE FILE CAR' AS YOUR COMMAND
DYNAM ALLOC FILE CAR DS USER1.CAR.FOCUS SHR REUSE
? TSO DDNAME CAR
-RUN
-PROMPT &XX.ENTER A SPACE TO CONTINUE.
MODIFY FILE CAR
COMPUTE LINE/A60=;
 RES/I4 = 0;
CRTFORM
" ENTER DYNAM COMMAND BELOW:"
" <LINE>"
COMPUTE
RES = MVSDYNAM(LINE, 60, RES);
GOTO DISPLAY

 CASE DISPLAY
 CRTFORM LINE 1
" THE RESULT OF DYNAM WAS <D.RES"
GOTO EXIT
ENDCASE
DATA
END
? TSO DDNAME CAR

The first query command displays the allocation that results from the DYNAM
ALLOCATE command.
DDNAME = CAR
DSNAME = USER1.CAR.FOCUS
DISP = SHR
DEVICE = DISK
VOLSER = USERMN
DSORG = PS
RECFM = F
SECONDARY = 100
ALLOCATION = BLOCKS
BLKSIZE = 4096
LRECL = 4096
TRKTOT = 8
EXTENTSUSED = 1
BLKSPERTRK = 12
TRKSPERCYL = 15
CYLSPERDISK = 2227
BLKSWRITTEN = 96
FOCUSPAGES = 8
ENTER A SPACE TO CONTINUE >

 TODAY: Returning the Current Date

Using Functions 8-13

Type one space and press the Enter key to continue. Then enter the DYNAM FREE
command. (The DYNAM keyword is assumed.)
ENTER DYNAM COMMAND BELOW:
 free file car

The function successfully transfers the DYNAM FREE command to the processor and
the return code displays.
THE RESULT OF DYNAM WAS 0

Press the Enter key to continue. The second query command indicates that the allocation
has been freed.
DDNAME = CAR
DSNAME =
DISP =
DEVICE =
VOLSER =
DSORG =
RECFM =
SECONDARY = ****
ALLOCATION =
BLKSIZE = 0
LRECL = 0
TRKTOT = 0
EXTENTSUSED = 0
BLKSPERTRK = 0
TRKSPERCYL = 0
CYLSPERDISK = 0
BLKSWRITTEN = 0
>

TODAY: Returning the Current Date
Available Operating Systems: All

Available Languages: reporting, Maintain

The TODAY function retrieves the current date from the system in the format
MM/DD/YY or MM/DD/YYYY for reporting, and in YY/MM/DD or YYYY/MM/DD
for Maintain.

For details on the TODAY function, see Chapter 5, Date and Time Functions.

Using Functions A-1

APPENDIX A

Creating Your Own Subroutines

Topics:

• Process Overview

• Considerations for Writing Subroutines

• Compilation and Storage

• Testing the Subroutine

• Example of a Custom Subroutine: The
MTHNAM Subroutine

• Subroutines Written in REXX

This topic discusses how to create your own private
collection of subroutines to use with FOCUS.

Creating Your Own Subroutines

A-2 Information Builders

Process Overview
The process of creating a subroutine involves four steps:

1. Write the subroutine for FOCUS the same way you would for a program. Use any
language that supports subroutine calls; among the most common languages are
FORTRAN, COBOL, PL/I, Assembler, and C.

2. Store the subroutine in a separate file; do not include it in the main program.

3. Compile the subroutine. In OS/390, link-edit it; in VM/CMS, add the subroutine to a
load library using the GENSUBLL command.

4. Test the subroutine; specify it in a FOCUS command, report request, or procedure.

For example, suppose you write a program named INTCOMP that calculates the amount
of money in an account earning simple interest. The program reads a record, tests if the
data is acceptable, and then calls a subroutine called SIMPLE that computes the amount
of money. The program and the subroutine are stored together in the same file.

The program and the subroutine shown here are written in pseudocode (a method of
representing computer code in a general way):

Begin program INTCOMP.
Execute this loop until end-of-file.
 Read next record, fields: PRINCPAL, DATE_PUT, YRRATE.
 If PRINCPAL is negative or greater than 100,000,
 reject record.
 If DATE_PUT is before January 1, 1975, reject record.
 If YRRATE is negative or greater than 20%, reject record.
 Call subroutine SIMPLE (PRINCPAL, DATE_PUT, YRRATE, TOTAL).
 Print PRINCPAL, YEARRATE, TOTAL.
End of loop.
End of program.

Subroutine SIMPLE (AMOUNT, DATE, RATE, RESULT).
Retrieve today's date from the system.
Let NO_DAYS = Days from DATE until today's date.
Let DAY_RATE = RATE / 365 days in a year.
Let RESULT = AMOUNT * (NO_DAYS * DAY_RATE + 1).
End of subroutine.

 Considerations for Writing Subroutines

Using Functions A-3

If you move the SIMPLE subroutine into a file separate from the main program and
compile it, you can call the subroutine from FOCUS. The following report request shows
how much money employees would accrue if they invested their salaries in accounts
paying 12%:

TABLE FILE EMPLOYEE
PRINT LAST_NAME DAT_INC SALARY AND COMPUTE
 INVESTED/D10.2 = SIMPLE (SALARY, DAT_INC, 0.12, INVESTED);
BY EMP_ID
END

Note: The subroutine is designed to return only the amount of the investment, not
today’s date. This is because a subroutine can return only a single value to FOCUS each
time it is called.

Considerations for Writing Subroutines
When you write a subroutine for FOCUS, there are requirements and limits that you need
to consider. The topic provides information about:

• Naming conventions

• Argument considerations

• Programming considerations

• Language considerations

• A programming technique that uses entry points. Entry points enable you to use one
algorithm to produce different results.

• A programming technique that allows multiple subroutine calls. Multiple calls
enable the subroutine to process more than 28 arguments.

Naming Conventions
The subroutine name may consist of up to eight characters, unless the language you are
using to write the subroutine supports a shorter naming convention. Each character can
be a letter or number. The first character of the name must be a letter (A-Z). Special
symbols are not permitted.

Creating Your Own Subroutines

A-4 Information Builders

Argument Considerations
When you create your arguments, consider these points:

• The argument maximum. Subroutine calls in FOCUS may contain up to 28
arguments. However, you can bypass this restriction if you create a subroutine that
accepts multiple calls, as described in Programming Technique: Subroutines With
More Than 28 Arguments on page A-9.

• Types of arguments. Subroutine calls can serve as arguments in other subroutine
calls or in FOCUS functions. For types of acceptable arguments and rules, see
Chapter 2, Accessing and Invoking a Function.

• Input arguments. FOCUS passes input arguments to subroutines using standard
conventions. Register 1 points to the list of argument addresses. Each address is a
full word.

• Output arguments. Subroutines may return only one output argument to the
FOCUS request. Place this argument last in the subroutine argument list. You can
choose any format for the output argument except in Dialogue Manager statements.

• Internal processing. When you specify values for arguments and FOCUS passes the
arguments to a subroutine,

• Alphanumeric arguments remain unchanged.

• Numeric arguments are converted to 8-byte, double-precision data (except in
-CMS RUN and -MVS RUN statements and amper variables, as discussed
below).

Various languages represent double-precision fields as declarations:

Language Declaration

Assembler DS, D

C Double

COBOL COMP-2

FORTRAN REAL*8

PL/I DECIMAL FLOAT (16)

 Considerations for Writing Subroutines

Using Functions A-5

• Dialogue Manager requirements. If you are writing a subroutine specifically for
Dialogue Manager, you may need to code your subroutine to perform conversion for
these situations:

• Operating system -RUN statements. FOCUS passes all arguments from -CMS
RUN, -TSO RUN, and -MVS RUN statements as alphanumeric data. If your
subroutine requires numeric arguments, you may choose to have your
subroutine convert these arguments into numeric format. Otherwise, the user
can use the ATODBL subroutine to convert the arguments into double-precision
format before passing them to the subroutine. The ATODBL subroutine is
described in Chapter 6, Format Conversion Functions.

• Operating system -RUN statements and output argument format. If the
subroutine is called from a -CMS or -TSO RUN statement, the output argument
is stored in the output variable in numeric format. Since FOCUS cannot
interpret data stored in Dialogue Manager variables in numeric format, the data
is unreadable. To prevent this, have your subroutine convert the output value
into a character string.

• -SET and output argument format. If the output argument is in numeric format,
the -SET statement truncates the output value to an integer, converts it to a
character string, and stores the value in a specified amper variable. To prevent
this, have your subroutine convert the output value into a character string. This
enables the numeric value to be passed to Dialogue Manager without being
truncated to an integer.

Programming Considerations
When you plan your programming requirements, consider these points:

• Write the subroutine as a proper subroutine, not as a function.

• If the subroutine initializes variables, it must initialize them each time it is executed
(serial reusability).

• Since a single FOCUS request may execute a subroutine hundreds or even thousands
of times, code the subroutine as efficiently as possible.

• If you create your own subroutines in text files or text libraries, the subroutine must
be 31-bit addressable.

Creating Your Own Subroutines

A-6 Information Builders

Language Considerations
Language considerations include:

• Available memory.

If you write the subroutine in a language that brings libraries into memory (for
example, FORTRAN and COBOL), the libraries reduce the amount of memory
available to the subroutine.

• FORTRAN input/output operations (I/O).

In VM/CMS, FOCUS does not support FORTRAN input/output operations. If a
subroutine written in FORTRAN must read or write data, write the I/O portions in a
separate subroutine in another language.

In TSO, FOCUS does support FORTRAN input/output operations.

• PL/I notes:

• Do not use the RETURNS attribute.

• Include the following attribute in the procedure (PROC) statement:

OPTIONS (COBOL)

• Declare alphanumeric arguments received from FOCUS requests as

CHARACTER (n)

where n is the field length as defined by the FOCUS request. Do not use the
VARYING attribute.

• Declare numeric arguments received from FOCUS requests as

DECIMAL FLOAT (16)

or

BINARY FLOAT (53)

 Considerations for Writing Subroutines

Using Functions A-7

• The format of the output argument to be returned to the FOCUS request depends
on how the format is described in the DEFINE or COMPUTE commands:

FOCUS Format PL/I Declaration

An CHARACTER (n) (Do not use the VARYING attribute.)

I BINARY FIXED (31)

F DECIMAL FLOAT (6) or BINARY FLOAT (21)

D DECIMAL FLOAT (16) or BINARY FLOAT (53)

P DECIMAL FIXED (15) (for small packed numbers, 8
bytes)

DECIMAL FIXED (31) (for large packed numbers, 16
bytes)

• Declare variables that are not arguments with the STATIC attribute. This avoids
dynamically allocating these variables every time the subroutine is executed.

• C language notes:

• Do not return a value with the return statement.

• Declare double-precision fields as ‘double’.

• The format of the output parameter to be returned to the FOCUS request
depends on how the format is defined in the request, as shown by the chart
below:

FOCUS Format C Declaration

An char *xxx n

(Note: Alphabetical fields are not terminated with a
null byte and, therefore, cannot be processed by
many of the string manipulation subroutines in the
run-time library.)

I long *xxx

F float *xxx

D double *xxx

P No equivalent in C.

Creating Your Own Subroutines

A-8 Information Builders

Programming Technique: Entry Points
Normally, subroutines are executed starting from their first statement. However, they can
be executed starting from any place in their code if you designate that place as an entry
point. (How you designate entry points depends on the language you are using.) Each
entry point has a name.

To execute a subroutine at an entry point, specify the entry name in the subroutine call
instead of the subroutine name. The general syntax is:

{subroutine|entrypoint} (input1, input2,...{'format'|outfield})

Entry points enable a subroutine to use one basic algorithm to produce different results.
For example, the DOWK subroutine calculates the days of the week on which dates fall.
When you specify the subroutine name DOWK, you obtain a 3-letter abbreviation of the
day. If you specify the entry name DOWKL, you obtain the full name. The calculation,
however, is the same.

Example Entry Point Example
This example illustrates how entry points work. The FTOC subroutine, written in
pseudocode below, converts Fahrenheit temperatures to Centigrade. The entry point
FTOK (designated by the Entry statement) sets a flag that causes 273 to be subtracted
from the Centigrade temperature (Kelvin temperature). The subroutine is:

Subroutine FTOC (FAREN, CENTI).
Let FLAG = 0.
Go to label X.
Entry FTOK (FAREN, CENTI).
Let FLAG = 1.
Label X.
Let CENTI = (5/9) * (FAREN - 32).
If FLAG = 1 then CENTI = CENTI - 273.
Return.
End of subroutine.

Here is a shorter way to write the subroutine. Notice that the kelv output argument listed
for the entry point is different from the centi output argument listed at the beginning of
the subroutine:

Subroutine FTOC (FAREN, CENTI).
Entry FTOK (FAREN, KELV).
Let CENTI = (5/9) * (FAREN - 32).
KELV = CENTI - 273.
Return.
End of Subroutine.

To obtain the Centigrade temperature, specify the subroutine name FTOC in the
subroutine call. For example:

CENTIGRADE/D6.2 = FTOC (TEMPERATURE, CENTIGRADE);

 Considerations for Writing Subroutines

Using Functions A-9

To obtain the Kelvin temperature, specify the entry name FTOK in the subroutine call.
For example:

KELVIN/D6.2 = FTOK (TEMPERATURE, KELVIN);

Note: In VM/CMS, subroutines can be executed from their entry points only if the
subroutines are stored in libraries. You must specify these libraries in the GLOBAL
command, as described in VM/CMS: Compilation and Storage on page A-13.

Programming Technique: Subroutines With More Than 28
Arguments

Subroutine call syntax cannot specify more than 28 arguments, including the output
argument. To process more than 28 arguments, you must write the subroutine so that the
user can specify two or more call statements to pass the arguments to the subroutine.

We recommend the following technique for writing subroutines with multiple call
statements:

1. Divide the subroutine into segments. Each segment will receive the arguments
passed by one corresponding subroutine call.

The argument list in the beginning of your subroutine must represent the same
number of arguments in the subroutine call, including a call number argument and
an output argument.

You may process some of the arguments as dummy arguments if you have an
unequal number of arguments. For example, if you divide 32 arguments among six
segments, the each segment processes six arguments; the sixth segment processes
two arguments and four dummy arguments.

2. Include a statement at the beginning of the subroutine that reads the call number
(first argument) and branches to a corresponding segment. Each segment processes
the arguments from one call. (For example, number 1 branches to the first segment,
number 2 to the second segment, and so on.)

3. Have each segment store the arguments it receives in other variables (which can be
processed by the last segment) or accumulate them in a running total.

End each segment with a statement returning control back to the FOCUS request
(RETURN statement).

4. The last segment returns the final output value to the FOCUS request.

Creating Your Own Subroutines

A-10 Information Builders

The following sample of pseudocode illustrates the four steps:

1. Subroutine name (num, input1, input2, input3, input4, outfield).
2. If NUM is 1 then goto label ONE
 else goto label TWO.

 Label ONE.
3. Let variable = input1 + input2.
 Return.

4. Label TWO
 LET outfield = variable + input3 + input4
 Return
 End of subroutine

Note: You can also use the entry point technique, described in Programming Technique:
Entry Points on page A-8, to write subroutines that process more than 28 arguments.

Syntax How to Use Subroutines With Multiple Call Statements
To use a subroutine that requires more than 28 arguments, you must specify two or more
call statements to pass the arguments to the subroutine.

The syntax for calling a subroutine with multiple call statements is

dummy = subroutine (1, group1, dummy);
dummy = subroutine (2, group2, dummy);
 .
 .
 .
outfield = subroutine (n, groupn, outfield);

where:

dummy

Is either the name of a dummy field or its format, enclosed in single quotation
marks. It must have the same format as the outfield argument.

Note: Do not specify the dummy argument for the last call statement; use the outfield
argument.

subroutine

Is the name of the subroutine, up to eight characters long, depending on your
programming language.

n

Is a number that identifies each subroutine call. It must be the first argument in each
subroutine call. The subroutine uses this call number to branch to segments of code.

group1...

Are lists of input arguments passed by each subroutine call. Each group contains the
same number of arguments, but no more than 26 arguments.
26 + call number + output =28

 Considerations for Writing Subroutines

Using Functions A-11

outfield

Is the output field that contains the value returned by the subroutine. It is the
fieldname of the field that contains the output or the format of the output value,
enclosed in single quotation marks, depending on the application. It is last argument
in the last call.

Note:

• Each subroutine call contains the same number of arguments. This is because the
argument list in each call must correspond to the argument list in the beginning of
the subroutine. The last call may contain several dummy arguments.

• Subroutines may require additional arguments as determined by the programmer
who created the subroutine.

Example Creating a Subroutine With 32 Input Arguments
This example illustrates how to create a subroutine with 32 input arguments using the
recommended technique. It also shows how the subroutine is specified in a DEFINE
command.

The ADD32 subroutine, written in pseudocode, sums 32 numbers. It is divided into six
segments, each of which adds six numbers from a subroutine call. (The total number of
input arguments is 36 but the last four are dummy arguments.) The sixth segment adds
two arguments to the SUM variable and returns the final output value. The sixth segment
does not process any values supplied for the four dummy arguments.

Creating Your Own Subroutines

A-12 Information Builders

The subroutine is:

Subroutine ADD32 (NUM, A, B, C, D, E, F, TOTAL).
If NUM is 1 then goto label ONE
else if NUM is 2 then goto label TWO
else if NUM is 3 then goto label THREE
else if NUM is 4 then goto label FOUR
else if NUM is 5 then goto label FIVE
else goto label SIX.

Label ONE.
Let SUM = A + B + C + D + E + F.
Return.

Label TWO
Let SUM = SUM + A + B + C + D + E + F
Return

Label THREE
Let SUM = SUM + A + B + C + D + E + F
Return

Label FOUR
Let SUM = SUM + A + B + C + D + E + F
Return

Label FIVE
Let SUM = SUM + A + B + C + D + E + F
Return

Label SIX
LET TOTAL = SUM + A + B
Return
End of subroutine

To use the ADD32 subroutine, list all six call statements; each call specifying six
numbers. The last four numbers, represented by zeroes, are dummy arguments. In this
example, the DEFINE command stores the total of the 32 numbers in the SUM32 field.

DEFINE FILE EMPLOYEE
DUMMY/D10 = ADD32 (1, 5, 7, 13, 9, 4, 2, DUMMY);
DUMMY/D10 = ADD32 (2, 5, 16, 2, 9, 28, 3, DUMMY);
DUMMY/D10 = ADD32 (3, 17, 12, 8, 4, 29, 6, DUMMY);
DUMMY/D10 = ADD32 (4, 28, 3, 22, 7, 18, 1, DUMMY);
DUMMY/D10 = ADD32 (5, 8, 19, 7, 25, 15, 4, DUMMY);
SUM32/D10 = ADD32 (6, 3, 27, 0, 0, 0, 0, SUM32);
END

 Compilation and Storage

Using Functions A-13

Compilation and Storage
Once you have written your subroutine, you need to compile and store it. This topic
discusses compiling and storing your subroutine for VM/CMS and OS/390.

VM/CMS: Compilation and Storage
On VM/CMS, compile the subroutine and use the GENSUBLL command to add the
compiled object code to a load library (filetype LOADLIB). Enter:

GENSUBLL ?

to display for online information about the command. Do not store subroutine in the
FUSELIB load library (FUSELIB LOADLIB), as it may be overwritten when your site
installs the next release of FOCUS.

You may also compile the subroutine and store the compiled object code either as a text
file (filetype TEXT), or as a member in a text library (filetype TXTLIB). Do not store it
in the FUSELIB text library (FUSELIB TXTLIB), as it may be overwritten when your
site installs the next release of FOCUS.

Individual text files are easier to maintain and control. Text libraries, on the other hand,
enable you to build different entry points into the subroutine (as shown in Programming
Technique: Entry Points on page A-8). Note that there are two VM/CMS commands
regarding text libraries:

• The TXTLIB command allows you to create, add to, and delete text libraries.

• The GLOBAL TXTLIB command allows users to specify text libraries to gain
access to their subroutines.

If the subroutine is written in PL/I, append this line at the end of the text file

ENTRY subroutine

where:

subroutine

Is the name of the subroutine. You can do this using your system editor.

Make sure that any subroutines that your subroutine calls are also compiled and placed in
text files or libraries.

Creating Your Own Subroutines

A-14 Information Builders

OS/390: Compilation and Storage
On OS/390, compile and link-edit the subroutine and store the module in a load library.
If your subroutine calls other subroutines, compile and link-edit all the subroutines
together in a single module.

If the subroutine is written in PL/I, include this link-editor control statement when
link-editing the subroutine

ENTRY subroutine

where:

subroutine

Is the name of the subroutine.

Do not store the subroutine in the FUSELIB load library (FUSELIB.LOAD), as it may be
overwritten when your site installs the next release of FOCUS.

Testing the Subroutine
Once you have successfully compiled your subroutine, access it and test it. In order to
access the subroutine, you need to issue the GLOBAL command for VM/CMS or the
ALLOCATE command for OS/390.

If an error occurs during your testing, check to see if the error is in the FOCUS request or
in the subroutine. If you are uncertain about its source, apply this test:

1. Write a dummy subroutine that has the same arguments but only returns a constant.

2. Execute the request with the dummy subroutine.

If the request executes the dummy subroutine normally, the error is in your
subroutine. If the request still generates an error, the error is in the request.

If you intend to make your subroutine available to other users, be sure to document what
your subroutine does, what the arguments are, what formats they have, and in what order
they must appear in the FOCUS subroutine call.

 Example of a Custom Subroutine: The MTHNAM Subroutine

Using Functions A-15

Example of a Custom Subroutine: The MTHNAM
Subroutine

This topic illustrates how a subroutine can be written in FORTRAN, COBOL, PL/I, BAL
Assembler, and C, and then executed in a FOCUS request. The subroutine, called
MTHNAM, converts a number from 1 to 12 to the full name of the corresponding month
(from January to December).

The subroutine performs the following:

1. The subroutine receives the input argument from the FOCUS request as a
double-precision number.

2. It adds .000001 to the number. This compensates for rounding errors. (Rounding
errors can occur since floating-point numbers are approximations and may be
inaccurate in the last significant digit.)

3. It moves the number into an integer field.

4. If the number is less than 1 or greater than 12, it changes the number to 13.

5. It defines a 13-element array containing the names of the months. The last element is
an error message.

6. It sets the index of the array equal to the number in the integer field. It then places
the corresponding array element into the output argument. If the number is 13, the
argument contains the error message.

7. It passes the output argument back to FOCUS.

Creating Your Own Subroutines

A-16 Information Builders

The MTHNAM Subroutine Written in FORTRAN
This is a FORTRAN version of the MTHNAM subroutine. The fields are:

MTH

Is the double-precision number passed by FOCUS.

MONTH

Is the name of the month passed back to FOCUS. Since the character string
‘September’ contains nine letters, MONTH is a 3-element array. The subroutine
passes the three elements back to FOCUS; FOCUS concatenates them into one field.

A

Is a 2-dimensional, 13 by 3 array containing the names of the months. The last three
elements contain the error message.

IMTH

Is the integer representing the month.

The program is:

 SUBROUTINE MTHNAM (MTH,MONTH)
 REAL*8 MTH
 INTEGER*4 MONTH(3),A(13,3),IMTH
 DATA
 + A(1,1)/'JANU'/, A(1,2)/'ARY '/, A(1,3)/' '/,
 + A(2,1)/'FEBR'/, A(2,2)/'UARY'/, A(2,3)/' '/,
 + A(3,1)/'MARC'/, A(3,2)/'H '/, A(3,3)/' '/,
 + A(4,1)/'APRI'/, A(4,2)/'L '/, A(4,3)/' '/,
 + A(5,1)/'MAY '/, A(5,2)/' '/, A(5,3)/' '/,
 + A(6,1)/'JUNE'/, A(6,2)/' '/, A(6,3)/' '/,
 + A(7,1)/'JULY'/, A(7,2)/' '/, A(7,3)/' '/,
 + A(8,1)/'AUGU'/, A(8,2)/'ST '/, A(8,3)/' '/,
 + A(9,1)/'SEPT'/, A(9,2)/'EMBE'/, A(9,3)/'R '/,
 + A(10,1)/'OCTO'/, A(10,2)/'BER '/, A(10,3)/' '/,
 + A(11,1)/'NOVE'/, A(11,2)/'MBER'/, A(11,3)/' '/,
 + A(12,1)/'DECE'/, A(12,2)/'MBER'/, A(12,3)/' '/,
 + A(13,1)/'**ER'/, A(13,2)/'ROR*'/, A(13,3)/'* '/
 IMTH=MTH+0.000001
 IF (IMTH .LT. 1 .OR. IMTH .GT. 12) IMTH=13
 DO 1 I=1,3
1 MONTH(I)=A(IMTH,I)
 RETURN
 END

 Example of a Custom Subroutine: The MTHNAM Subroutine

Using Functions A-17

The MTHNAM Subroutine Written in COBOL
This is a COBOL version of the MTHNAM subroutine. The fields are:

MONTH-TABLE

Is a field containing the names of the months and the error message.

MLINE

Is a 13-element array that redefines the MONTH-TABLE field. Each element (called
A) contains the name of a month; the last element contains the error message.

A

Is one element in the MLINE array.

IX

Is an integer field that indexes MLINE.

IMTH

Is the integer representing the month.

MTH

Is the double-precision number passed by FOCUS.

MONTH

Is the name of the month passed back to FOCUS.

Creating Your Own Subroutines

A-18 Information Builders

The program is:

IDENTIFICATION DIVISION.
PROGRAM-ID. MTHNAM.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
 01 MONTH-TABLE.
 05 FILLER PIC X(9) VALUE 'JANUARY '.
 05 FILLER PIC X(9) VALUE 'FEBRUARY '.
 05 FILLER PIC X(9) VALUE 'MARCH '.
 05 FILLER PIC X(9) VALUE 'APRIL '.
 05 FILLER PIC X(9) VALUE 'MAY '.
 05 FILLER PIC X(9) VALUE 'JUNE '.
 05 FILLER PIC X(9) VALUE 'JULY '.
 05 FILLER PIC X(9) VALUE 'AUGUST '.
 05 FILLER PIC X(9) VALUE 'SEPTEMBER'.
 05 FILLER PIC X(9) VALUE 'OCTOBER '.
 05 FILLER PIC X(9) VALUE 'NOVEMBER '.
 05 FILLER PIC X(9) VALUE 'DECEMBER '.
 05 FILLER PIC X(9) VALUE '**ERROR**'.
 01 MLIST REDEFINES MONTH-TABLE.
 05 MLINE OCCURS 13 TIMES INDEXED BY IX.
 10 A PIC X(9).
 01 IMTH PIC S9(5) COMP.
LINKAGE SECTION.
 01 MTH COMP-2.
 01 MONTH PIC X(9).
PROCEDURE DIVISION USING MTH, MONTH.
BEG-1.
 ADD 0.000001 TO MTH.
 MOVE MTH TO IMTH.
 IF IMTH < +1 OR > 12
 SET IX TO +13
 ELSE
 SET IX TO IMTH.
 MOVE A (IX) TO MONTH.
 GOBACK.

 Example of a Custom Subroutine: The MTHNAM Subroutine

Using Functions A-19

The MTHNAM Subroutine Written in PL/I
This is a PL/I version of the MTHNAM subroutine. The fields are:

MTHNUM

Is the double-precision number passed by FOCUS.

FULLMTH

Is the name of the month passed back to FOCUS.

MONTHNUM

Is the integer representing the month.

MONTH_TABLE

A 13-element array containing the names of the months. The last element contains
the error message.

The program is:

MTHNAM: PROC(MTHNUM,FULLMTH) OPTIONS(COBOL);
DECLARE MTHNUM DECIMAL FLOAT (16) ;
DECLARE FULLMTH CHARACTER (9) ;
DECLARE MONTHNUM FIXED BIN (15,0) STATIC ;
DECLARE MONTH_TABLE(13) CHARACTER (9) STATIC
 INIT ('JANUARY',
 'FEBRUARY',
 'MARCH',
 'APRIL',
 'MAY',
 'JUNE',
 'JULY',
 'AUGUST',
 'SEPTEMBER',
 'OCTOBER',
 'NOVEMBER',
 'DECEMBER',
 '**ERROR**') ;
 MONTHNUM = MTHNUM + 0.00001 ;
 IF MONTHNUM < 1 MONTHNUM > 12 THEN
 MONTHNUM = 13 ;
 FULLMTH = MONTH_TABLE(MONTHNUM) ;
RETURN;
END MTHNAM;

Creating Your Own Subroutines

A-20 Information Builders

The MTHNAM Subroutine Written in BAL Assembler
This is a BAL Assembler version of the MTHNAM subroutine.

 START 0
 STM 14,12,12(13) save registers
 BALR 12,0 load base reg
 USING *,12
 *
 L 3,0(0,1) load addr of first arg into R3
 LD 4,=D'0.0' clear out FPR4 and FPR5
 LE 6,0(0,3) FP number in FPR6
 LPER 4,6 abs value in FPR4
 AW 4,=D'0.00001' add rounding constant
 AW 4,DZERO shift out fraction
 STD 4,FPNUM move to memory
 L 2,FPNUM+4 integer part in R2
 TM 0(3),B'10000000' check sign of original no
 BNO POS branch if positive
 LCR 2,2 complement if negative
 *
 POS LR 3,2 copy month number into R3
 C 2,=F'0' is it zero or less?
 BNP INVALID yes. so invalid
 C 2,=F'12' is it greater than 12?
 BNP VALID no. so valid
 INVALID LA 3,13(0,0) set R3 to point to item @13 (error)
 *
 VALID SR 2,2 clear out R2
 M 2,=F'9' multiply by shift in table
 *
 LA 6,MTH(3) get addr of item in R6
 L 4,4(0,1) get addr of second arg in R4
 MVC 0(9,4),0(6) move in text
 *
 LM 14,12,12(13) recover regs
 BR 14 return
 *

 Example of a Custom Subroutine: The MTHNAM Subroutine

Using Functions A-21

 DS 0D alignment
 FPNUM DS D floating point number
 DZERO DC X'4E00000000000000' shift constant
 MTH DC CL9'dummyitem' month table
 DC CL9'JANUARY'
 DC CL9'FEBRUARY'
 DC CL9'MARCH'
 DC CL9'APRIL'
 DC CL9'MAY'
 DC CL9'JUNE'
 DC CL9'JULY'
 DC CL9'AUGUST'
 DC CL9'SEPTEMBER'
 DC CL9'OCTOBER'
 DC CL9'NOVEMBER'
 DC CL9'DECEMBER'
 DC CL9'**ERROR**'
 END MTHNAM

The MTHNAM Subroutine Written in C
This is a C language version of the MTHNAM subroutine.

void mthnam(double *,char *);
void mthnam(mth,month)
double *mth;
char *month;
{
char *nmonth[13] = {"January ",
 "February ",
 "March ",
 "April ",
 "May ",
 "June ",
 "July ",
 "August ",
 "September",
 "October ",
 "November ",
 "December ",
 "**Error**"};
int imth, loop;
imth = *mth + .00001;
imth = (imth < 1 ¦¦ imth > 12 ? 13 : imth);
for (loop=0;loop < 9;loop++)
 month[loop] = nmonth[imth-1][loop];
}

Creating Your Own Subroutines

A-22 Information Builders

The MTHNAM Subroutine Called by a FOCUS Request
The following example demonstrates how a FOCUS request uses the MTHNAM
subroutine. The DEFINE command extracts the month portion of the pay date and
executes the MTHNAM subroutine to convert it into the full name of the month. The
name is stored in the PAY_MONTH field. The report request prints the monthly pay of
Alfred Stevens.

The request is as follows:

DEFINE FILE EMPLOYEE
MONTH_NUM/M = PAY_DATE;
PAY_MONTH/A12 = MTHNAM (MONTH_NUM, PAY_MONTH);
END
TABLE FILE EMPLOYEE
PRINT PAY_MONTH GROSS
BY EMP_ID BY FIRST NAME BY LAST_NAME
BY PAY_DATE
IF LN IS STEVENS
END

This request produces the following report:

EMP_ID FIRST NAME LAST_NAME PAY_DATE PAY_MONTH GROSS
------- ---------- --------- -------- --------- -----
071382660 ALFRED STEVENS 81/11/30 NOVEMBER $833.33
 81/12/31 DECEMBER $833.33
 82/01/29 JANUARY $916.67
 82/02/26 FEBRUARY $916.67
 82/03/31 MARCH $916.67
 82/04/30 APRIL $916.67
 82/05/28 MAY $916.67
 82/06/30 JUNE $916.67
 82/07/30 JULY $916.67
 82/08/31 AUGUST $916.67

 Subroutines Written in REXX

Using Functions A-23

Subroutines Written in REXX
A FOCUS request can call user-written subroutines coded in REXX. These routines, also
called FUSREXX macros, provide a 4GL option to the languages supported for
user-written subroutines.

Using REXX Subroutines
REXX subroutines are supported in the VM/CMS and OS/390 environments:

• In VM/CMS, a FUSREXX macro can contain either REXX source code or compiled
REXX code created by running the source code through the REXX compiler. In
addition, you can load either type of FUSREXX macro into memory using the
EXECLOAD command. The compilation and load process reduces the CPU
requirements and increases speed. Compilation also is a security tool, making private
information difficult to read.

• In OS/390, FOCUS supports source versions of REXX subroutines only.

Because of CPU requirements, the use of FUSREXX routines in large production jobs
should be monitored carefully.

The following notes apply to the examples in this topic:

• REXX versions are not necessarily the same in all operating environments.
Therefore, some of the examples may use REXX functions that are not available in
your environment.

• The REXX code is listed, but not fully explained. See your REXX documentation
for information about REXX instructions and functions.

Syntax How to Call a REXX User-Written Subroutine
In a DEFINE FILE command:

DEFINE FILE filename
fieldname/{An|In} = subname(inlen1, inparm1, ..., outlen, outparm);
END

In a DEFINE attribute in the Master File:

DEFINE fieldname/{An|In} = subname(inlen1, inparm1, ..., outlen, outparm);

In a COMPUTE command:

fieldname/{An|In} = subname(inlen1, inparm1, ..., outlen, outparm);

In a Dialogue Manager -SET command:

-SET &var = subname(inlen1, inparm1, ..., outlen, outparm);

Creating Your Own Subroutines

A-24 Information Builders

where:

fieldname

Is the name of the field to receive the return value.

An|In

Is the format of the field to receive return value.

subname

Is the name of the REXX routine.

inlen1, inparm1 ...

Are the input parameters. Each parameter consists of a pair of values: a length and
an alphanumeric parameter value. You can supply the name of an alphanumeric
field, an alphanumeric literal, or an expression that resolves to an alphanumeric
value. Up to 13 input parameter pairs are supported by FOCUS. Each parameter
value can be up to 256 bytes long.

Note: Dialogue Manager converts input parameters that consist of numeric digits to
decimal format, regardless of their original data type. Therefore, you cannot pass
numeric input parameters to a REXX routine using -SET.

outlen, outparm

Is the output parameter pair, consisting of a length and a return value. In most cases,
the return value should be alphanumeric, but integer return values are also
supported. The return value can be the name of the field or Dialogue Manager
variable to which the value is returned or its USAGE format enclosed in single
quotation marks. The return value can be a minimum of one byte long and a
maximum (for an alphanumeric value) of 256 bytes.

Note: If the value returned is integer, outlen must be 4 because FOCUS reserves
four bytes for integer fields.

&var

Is the name of the Dialogue Manager variable to receive the return value.

 Subroutines Written in REXX

Using Functions A-25

REXX subroutines:

• Require input data to be character and should return character output. Integer return
values are also supported, but the output length in the subroutine call must be four.
FOCUS has a 256-byte limit on character variables. This limit also applies to
FUSREXX routines. FUSREXX routines return variable length data. For this reason,
you must supply the length of the input arguments and the maximum length of the
output data.

• Do not require any input parameters, but do require one return parameter, which
must return at least one byte of data. It is possible for a FUSREXX function to need
no input, such as a function that returns USERID.

• Do not support floating-point numbers (REXX does not have native floating-point
conversion routines). All numeric fields should be converted to character format
with no commas using a FOCUS function such as EDIT before being passed to the
FUSREXX routine. This prevents FOCUS from converting numbers to floating point
before passing them to the FUSREXX routine.

• Are not supported in Dialogue Manager -CMS RUN commands.

• On VM/CMS, the FILETYPE of REXX user-written functions is FUSREXX; they
can be stored on any accessed disk.

• On OS/390, DDNAME FUSREXX must be allocated to a PDS, and that library will
be searched before other OS/390 libraries.

• The search order for subroutines is:

1. FUSREXX

2. Standard VM/CMS or OS/390 search order.

Creating Your Own Subroutines

A-26 Information Builders

Example Returning the Day of the Week
The FUSREXX routine DOW returns the day of the week an employee was hired. The
routine passes one input parameter pair and one return field pair.

DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE) ;
2. DAY_OF_WEEK/A9 WITH AHDT= DOW(6,AHDT,9,DAY_OF_WEEK) ;
 END

TABLE FILE EMPLOYEE
PRINT LAST_NAME HIRE_DATE DAY_OF_WEEK
END

1. The input field is six bytes long. Data is passed in field AHDT. The hire date is
converted to an alphanumeric field.

2. The return field is up to nine bytes long and is named DAY_OF_WEEK.

The output is:

LAST_NAME HIRE_DATE DAY_OF_WEEK
--------- --------- -----------
STEVENS 80/06/02 Monday
SMITH 81/07/01 Wednesday
JONES 82/05/01 Saturday
SMITH 82/01/04 Monday
BANNING 82/08/01 Sunday
IRVING 82/01/04 Monday
ROMANS 82/07/01 Thursday
MCCOY 81/07/01 Wednesday
BLACKWOOD 82/04/01 Thursday
MCKNIGHT 82/02/02 Tuesday
GREENSPAN 82/04/01 Thursday
CROSS 81/11/02 Monday

The FUSREXX macro is displayed below. The FUSREXX routine reads the input date,
reformats it to MM/DD/YY format, and returns the day of the week using a REXX
DATE call.

/* DOW routine. Return WEEKDAY from YYMMDD format date */
Arg ymd .
Return Date('W',Translate('34/56/12',ymd,'123456'),'U')

 Subroutines Written in REXX

Using Functions A-27

Example Returning Text Format
The REXX function called in this request returns the number of copies of each classic
movie in text format. It passes one input parameter and one return field.

 TABLE FILE MOVIES
 PRINT TITLE AND COMPUTE
1. ACOPIES/A3 = EDIT(COPIES); AS 'COPIES'
 AND COMPUTE
2. TXTCOPIES/A8 = NUMCNT(3,ACOPIES,8,TXTCOPIES);
 WHERE CATEGORY EQ 'CLASSIC'
 END

1. The input field is 3 bytes long. Data is passed in field ACOPIES. The COPIES field
is converted to an alphanumeric field.

2. The return field is up to 8 bytes long and is named TXTCOPIES.

The output is:

TITLE COPIES TXTCOPIES
----- ------ ---------
EAST OF EDEN 001 One
CITIZEN KANE 003 Three
CYRANO DE BERGERAC 001 One
MARTY 001 One
MALTESE FALCON, THE 002 Two
GONE WITH THE WIND 003 Three
ON THE WATERFRONT 002 Two
MUTINY ON THE BOUNTY 002 Two
PHILADELPHIA STORY, THE 002 Two
CAT ON A HOT TIN ROOF 002 Two
CASABLANCA 002 Two

The FUSREXX macro is:

/* NUMCNT routine. Pass a number from 0 to 10 and return a character value
*/
Arg numbr .
data = 'Zero One Two Three Four Five Six Seven Eight Nine Ten'
numbr = numbr + 1 /* so 0 equals 1 element in array */
Return Word(data,numbr)

Creating Your Own Subroutines

A-28 Information Builders

Example Passing Multiple Arguments
The following example shows how to pass multiple arguments to a FUSREXX routine. It
is an interest calculation using the present salary for the employee and the employee start
date to calculate a present value. It passes four input parameters and one return field.

DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE) ;
2. ACSAL/A12 = EDIT(CURR_SAL) ;
3. DCSAL/D12.2 = CURR_SAL ;
4. PV/A12 = INTEREST(6,AHDT,6,'&YMD',3,'6.5',12,ACSAL,12,PV) ;
 END

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE DCSAL PV
END

1. The first input field is six bytes long. Data is passed in field AHDT. The hire date is
converted to an alphanumeric field.

2. The current salary is converted to an alphanumeric field for use in the interest
calculation.

3. The current salary is converted to a double-precision field to include commas and a
decimal point in the output.

4. The second input field is six bytes long. Data is passed as a FOCUS character
variable &YMD in YYMMDD format.

The third input field is a character value of 6.5, which is 3 bytes long to account for
the decimal point in the character string.

The fourth input field is 12 bytes long. This passes the character field ACSAL.

The return field is up to 12 bytes long and is named PV.

The output is:

LAST_NAME FIRST_NAME HIRE_DATE DCSAL PV
--------- ---------- --------- ----- --
STEVENS ALFRED 80/06/02 11,000.00 14055.14
SMITH MARY 81/07/01 13,200.00 15939.99
JONES DIANE 82/05/01 18,480.00 21315.54
SMITH RICHARD 82/01/04 9,500.00 11155.60
BANNING JOHN 82/08/01 29,700.00 33770.53
IRVING JOAN 82/01/04 26,862.00 31543.35
ROMANS ANTHONY 82/07/01 21,120.00 24131.19
MCCOY JOHN 81/07/01 18,480.00 22315.99
BLACKWOOD ROSEMARIE 82/04/01 21,780.00 25238.25
MCKNIGHT ROGER 82/02/02 16,100.00 18822.66
GREENSPAN MARY 82/04/01 9,000.00 10429.03
CROSS BARBARA 81/11/02 27,062.00 32081.82

 Subroutines Written in REXX

Using Functions A-29

The FUSREXX macro is displayed below. The REXX format command is used to format
the return value.

/* Simple INTEREST program. dates are yymmdd format */
Arg start_date,now_date,percent,open_balance, .

begin = Date('B',Translate('34/56/12',start_date,'123456'),'U')
stop = Date('B',Translate('34/56/12',now_date,'123456'),'U')
valnow = open_balance * (((stop - begin) * (percent / 100)) / 365)

Return Format(valnow,9,2)

Example Accepting Multiple Tokens in Parameters
FUSREXX routines can accept multiple tokens in a parameter. The following procedure
passes employee information (pay date and monthly gross pay) as separate tokens in the
first parameter. It passes three input parameters and one return field.

DEFINE FILE EMPLOYEE
1. COMPID/A256 = FN | ' ' | LN | ' ' | DPT | ' ' | EID ;
2. APD/A6 = EDIT(PAY_DATE) ;
3. APAY/A12 = EDIT(MO_PAY) ;
4. OK4RAISE/A1 = OK4RAISE(256,COMPID,6,APD,12,APAY,1,OK4RAISE) ;
 END

TABLE FILE EMPLOYEE
PRINT EMP_ID FIRST_NAME LAST_NAME DEPARTMENT
IF OK4RAISE EQ '1'
END

1. The first input field is 256 bytes long. Data is passed in field COMPID. COMPID is
the concatenation of several character fields passed as the first parameter. Each of
the other parameters is a single argument.

2. The second input field is six bytes long. Data is passed in field APD. The pay date is
converted to an alphanumeric field.

3. The third input field is 12 bytes long. Data is passed in field APAY. The monthly
gross pay is converted to an alphanumeric field.

4. The return field is up to one byte long and is named OK4RAISE.

The output is:

EMP_ID FIRST_NAME LAST_NAME DEPARTMENT
------ ---------- --------- ----------
071382660 ALFRED STEVENS PRODUCTION

Creating Your Own Subroutines

A-30 Information Builders

The FUSREXX macro is displayed below. Commas separate FUSREXX parameters. The
ARG command specifies multiple variable names before the first comma and, therefore,
separates the first FUSREXX parameter into separate REXX variables, using blanks as
delimiters between the variables.

/* OK4RAISE routine. Parse separate tokens in the 1st parm, then more parms
*/

Arg fname lname dept empid, pay_date, gross_pay, .

If dept = 'PRODUCTION' & pay_date < '820000'
Then retvalue = '1'
Else retvalue = '0'

Return retvalue

FUSREXX routines should use the REXX RETURN function to return data to FOCUS.
REXX EXIT is acceptable, but is generally used to end an EXEC, not a FUNCTION.

Correct
/* Some FUSREXX function */
Arg input
some rexx process ...
Return data_to_Focus

Not as Clear
/* Another FUSREXX function */
Arg input
some rexx process ...
Exit 0

Example Returning an Integer Value
It is possible for REXX to return a value that is not character format. The following
example shows how REXX returns an integer value. This example also shows how the
format of the integer field is used as the last field in the return argument. It passes two
input fields and one return field. The FUSREXX routine NUMDAYS returns the number
of days between hire date and date of increase. Note that the return value for an integer is
always four bytes long.

DEFINE FILE EMPLOYEE
1. AHDT/A6 = EDIT(HIRE_DATE) ;
2. ADI/A6 = EDIT(DAT_INC) ;
3. BETWEEN/I6 = NUMDAYS(6,AHDT,6,ADI,4,'I6') ;
 END

TABLE FILE EMPLOYEE
PRINT LAST_NAME HIRE_DATE DAT_INC BETWEEN
IF BETWEEN NE 0
END

1. The first input field is six bytes long. Data is passed in field AHDT. The hire date is
converted to an alphanumeric field.

2. The second input field is six bytes long. Data is passed in field ADI. The date of
increase is converted to an alphanumeric field.

3. The return field is up to six bytes long and is named BETWEEN.

 Subroutines Written in REXX

Using Functions A-31

The output is:

LAST_NAME HIRE_DATE DAT_INC BETWEEN
--------- --------- ------- -------

STEVENS 80/06/02 82/01/01 578
STEVENS 80/06/02 81/01/01 213
SMITH 81/07/01 82/01/01 184
JONES 82/05/01 82/06/01 31
SMITH 82/01/04 82/05/14 130
IRVING 82/01/04 82/05/14 130
MCCOY 81/07/01 82/01/01 184
MCKNIGHT 82/02/02 82/05/14 101
GREENSPAN 82/04/01 82/06/11 71
CROSS 81/11/02 82/04/09 158

The FUSREXX macro is displayed below. The return value is converted from REXX
character to HEX and formatted to be four bytes long.

/* NUMDAYS routine. Return number of days between 2 dates in yymmdd format
*/
/* The value returned will be in hex format
 */

Arg first,second .

base1 = Date('B',Translate('34/56/12',first,'123456'),'U')
base2 = Date('B',Translate('34/56/12',second,'123456'),'U')

Return D2C(base2 - base1,4)

Example Returning a Date Field From a FUSREXX Macro
FOCUS smart date fields contain the integer number of days since the base date
12/31/1900. REXX has a date function that can accept and return several types of date
formats, including one called Base format (‘B’) that contains the number of days since
the REXX base date 01/01/0001 (Jan. 1 of the Year 1).

Because input arguments must be alphanumeric, you cannot pass a smart date field to a
REXX subroutine. Therefore, you can either:

• Pass the REXX routine an alphanumeric field with date display options and have it
return a smart date value, if you account for the number of days difference between
the FOCUS base date and the REXX base date and convert the result to integer.

• Pass the REXX routine a smart date value converted to alphanumeric format. With
this technique, you must account for the difference in base dates for both the input
and output.

Creating Your Own Subroutines

A-32 Information Builders

The following example uses the technique of passing the subroutine an alphanumeric
field with date display options. The FUSREXX macro called DATEREX1 takes two
input arguments: an alphanumeric date in A8YYMD format and a number of days in
character format. It returns a smart date in YYMD format that represents the input date
plus the number of days. The FOCUS format A8YYMD corresponds to the REXX
Standard format (‘S’).

The number 693959 represents the number of days difference between the FOCUS base
date and the REXX base date:

/* REXX DATEREX1 routine. Add indate (format A8YYMD) to days */
Arg indate, days .
Return D2C(Date('B',indate,'S')+ days - 693959, 4)

The following request uses the DATEREX1 macro to calculate the date that is 365 days
from the hire date of each employee. The input arguments are the hire date and the
number of days to add. Because HIRE_DATE is in I6YMD format, it must be converted
to A8YYMD before being passed to the macro:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE
AND COMPUTE
 ADATE/YYMD = HIRE_DATE; NOPRINT
AND COMPUTE
 INDATE/A8YYMD= ADATE; NOPRINT
AND COMPUTE
 NEXT_DATE/YYMD = DATEREX1(8,INDATE,3,'365',4,NEXT_DATE);
BY LAST_NAME NOPRINT
END

The output is:

LAST_NAME FIRST_NAME HIRE_DATE NEXT_DATE
--------- ---------- --------- ---------
BANNING JOHN 82/08/01 1983/08/01
BLACKWOOD ROSEMARIE 82/04/01 1983/04/01
CROSS BARBARA 81/11/02 1982/11/02
GREENSPAN MARY 82/04/01 1983/04/01
IRVING JOAN 82/01/04 1983/01/04
JONES DIANE 82/05/01 1983/05/01
MCCOY JOHN 81/07/01 1982/07/01
MCKNIGHT ROGER 82/02/02 1983/02/02
ROMANS ANTHONY 82/07/01 1983/07/01
SMITH MARY 81/07/01 1982/07/01
SMITH RICHARD 82/01/04 1983/01/04
STEVENS ALFRED 80/06/02 1981/06/02

 Subroutines Written in REXX

Using Functions A-33

The following example uses the technique of passing the subroutine a smart date
converted to alphanumeric format. The FUSREXX macro called DATEREX2 takes two
input arguments: an alphanumeric number of days that represents a smart date, and a
number of days to add. It returns a smart date in YYMD format that represents the input
date plus the number of days. Both the input date and output date are in REXX base date
(‘B’) format.

The number 693959 represents the number of days difference between the FOCUS base
date and the REXX base date:

/* REXX DATEREX2 routine. Add indate (original format YYMD) to days */
Arg indate, days .
Return D2C(Date('B',indate+693959,'B') + days - 693959, 4)

The following request uses the DATEREX2 macro to calculate the date that is 365 days
from the hire date of each employee. The input arguments are the hire date and the
number of days to add. Because HIRE_DATE is in I6YMD format, it must be converted
to an alphanumeric number of days before being passed to the macro:

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME HIRE_DATE
AND COMPUTE
 ADATE/YYMD = HIRE_DATE; NOPRINT
AND COMPUTE
 INDATE/A8 = EDIT(ADATE); NOPRINT
AND COMPUTE
 NEXT_DATE/YYMD = DATEREX2(8,INDATE,3,'365',4,NEXT_DATE);
BY LAST_NAME NOPRINT
END

The report output is the same as that produced by the DATEREX1 macro.

Creating Your Own Subroutines

A-34 Information Builders

Compiling FUSREXX Macros in VM/CMS
The SUM2 FUSREXX macro takes two amounts as input and returns the sum in integer
format:

/* SUM2 routine. Add amount1 to amount2 and return as integer */
Arg amt1, amt2 .
Return D2C(amt1 + amt2,4)

To compile and compress this FUSREXX macro in VM/CMS, issue the following
command. Note that the file identifier must be in upper case:

rexxcomp SUM2 FUSREXX A (condense

A FILELIST of SUM2 * A lists the following files:

SUM2 CFUSREXX A1 F 1024 2 1 1/31/00 12:07:19
SUM2 LISTING A1 V 121 42 1 1/31/00 12:07:19
SUM2 FUSREXX A1 F 80 3 1 1/31/00 12:04:19

The file SUM2 FUSREXX is the original source file. The file SUM2 CFUSREXX is the
compiled version. To call the compiled version in a FOCUS request, you must rename it
to have the file type FUSREXX. The file SUM2 LISTING details the results of the
compilation.

To use the compiled version in a FOCUS request, issue the following commands. The
EXECLOAD command, which loads the routine into memory and improves
performance, is optional:

rename sum2 fusrexx a ssum2 fusrexx a
rename sum2 cfusrexx a sum2 fusrexx a
execload sum2 fusrexx a

Then, in FOCUS, issue the following request:

TABLE FILE EMPLOYEE
PRINT CSAL AND COMPUTE
ASAL/A12 = EDIT(CSAL);
AMOUNT/A4 = '1000';
TOTSAL/I6 = SUM2(12, ASAL, 4, AMOUNT, 4, TOTSAL);
END

 Subroutines Written in REXX

Using Functions A-35

The output is:

CURR_SAL ASAL AMOUNT TOTSAL
-------- ---- ------ ------
$11,000.00 000000011000 1000 12000
$13,200.00 000000013200 1000 14200
$18,480.00 000000018480 1000 19480
$9,500.00 000000009500 1000 10500
$29,700.00 000000029700 1000 30700
$26,862.00 000000026862 1000 27862
$21,120.00 000000021120 1000 22120
$18,480.00 000000018480 1000 19480
$21,780.00 000000021780 1000 22780
$16,100.00 000000016100 1000 17100
$9,000.00 000000009000 1000 10000
$27,062.00 000000027062 1000 28062

Using Functions I-1

Index
A
ABS function, 7-2

accessing functions, 2-14
function libraries, 2-14, 2-16 to 2-18
FUSELIB LOAD library, 2-16
OS/390, 2-14 to 2-16
TSO, 2-15
UNIX, 2-16
VM/CMS, 2-16 to 2-17

alphanumeric format, 5-24
converting, 5-24, 6-6, 6-19

alphanumeric strings, 6-2
converting, 6-2 to 6-4, 6-6

ARGLEN function, 3-2

argument formats, 2-4

argument order, 2-5

argument types, 2-3

arguments, 2-3, 2-5
functions as, 2-11
length, 2-4, 3-2

ASCII values, 6-9

ASIS function, 3-3, 7-3

Assembler language, A-4

ATODBL function, 6-2 to 6-4, 6-6
-RUN command, 6-2

AYM function, 5-35 to 5-36

AYMD function, 5-37 to 5-38

B
BAL Assembler language, A-20

MTHNAM subroutine, A-20

bar charts, 7-3
scales, 7-3, 7-5

BAR function, 7-3 to 7-5

batch allocation, 2-14

bit strings, 3-5 to 3-6

bits, 3-4 to 3-5
evaluating, 3-4

BITSON function, 3-4 to 3-5

BITVAL function, 3-5 to 3-6

branching, 2-8

BUSDAYS parameter, 5-3

business days, 5-3
setting, 5-3

BYTVAL function, 3-7

C
C language, A-4

MTHNAM subroutine, A-21

character functions, 1-3, 3-1
ARGLEN, 3-2
ASIS, 3-3
BITSON, 3-4
BITVAL, 3-5
BYTVAL, 3-7
CHKFMT, 3-8
CTRAN, 3-11
CTRFLD, 3-17
EDIT, 3-19
GETTOK, 3-20
LCWORD, 3-22
LJUST, 3-24
LOCASE, 3-25
OVRLAY, 3-27
PARAG, 3-29
POSIT, 3-31
RJUST, 3-32
SOUNDEX, 3-33
SQUEEZ, 3-35
STRIP, 3-36
SUBSTR, 3-37

Index

I-2 Information Builders

character functions (continued)
TRIM, 3-39
UPCASE, 3-40

character strings, 3-8
adding, 3-19 to 3-20
centering, 3-17 to 3-18
checking format, 3-8 to 3-10
comparing, 3-33 to 3-34
converting, 3-22 to 3-26, 3-40 to 3-42, 5-24
deleting characters, 3-36 to 3-37
deleting leading or trailing occurrences, 3-39
extracting, 3-19 to 3-22, 3-31 to 3-32, 3-38
extracting characters, 3-19
extracting substrings, 3-37
justifying, 3-24 to 3-25, 3-32 to 3-33
overlaying, 3-27 to 3-28
reducing blanks, 3-35

characters, 3-7
substituting, 3-11 to 3-14, 3-16
translating, 3-7, 3-11

CHGDAT function, 5-38 to 5-40

CHKFMT function, 3-8 to 3-10

CHKPCK function, 7-6 to 7-7

COBOL language, A-4
MTHNAM subroutine, A-17

commands, 2-5
functions and, 2-5
GLOBAL, A-14

compiling subroutines, A-13
OS/390, A-14
VM/CMS, A-13

components, 5-2

COMPUTE command, 2-6
-IF command, 2-6

CTRAN function, 3-11 to 3-14, 3-16

CTRFLD function, 3-17 to 3-18

custom subroutines, A-15

D
DADMY function, 5-40

DADYM function, 5-40

DAMDY function, 5-40

DAMYD function, 5-40

data source functions, 1-6, 4-1
FIND, 4-5
LAST, 4-7
LOOKUP, 4-9

data values, 4-1
decoding, 4-2
retrieving, 4-7, 4-9
verifying, 4-5

date and time functions, 1-7, 5-1
DATEADD, 5-6
DATECVT, 5-9
DATEDIF, 5-11
DATEMOV, 5-14
Dialogue Manager, 5-5
HADD, 5-16
HCNVRT, 5-17
HDATE, 5-19
HDIFF, 5-20
HDTTM, 5-21
HGETC, 5-22
HHMMSS, 5-23
HINPUT, 5-24
HMIDNT, 5-25
HNAME, 5-26
HPART, 5-28
HSETPT, 5-29
HTIME, 5-30
legacy date functions, 1-7, 1-10, 5-32
settings, 5-1
TODAY, 5-31

DATEADD function, 5-3, 5-6 to 5-8

DATECVT function, 5-9 to 5-10

DATEDIF function, 5-3, 5-11 to 5-13

DATEFNS parameter, 5-33

DATEMOV function, 5-3, 5-14 to 5-16

 Index

Using Functions I-3

date-time functions, 5-2

date-time values, 5-1
adding, 5-6, 5-35, 5-37
calculating, 5-11
calculating difference, 5-42, 5-49
converting, 5-9, 5-17, 5-19, 5-21, 5-24, 5-28,

5-30, 5-38, 5-40, 5-44, 5-46 to 5-47
extracting components, 5-26
finding day of week, 5-43
incrementing a field, 5-16
inserting numeric values, 5-29
legacy dates, 5-32
moving, 5-14
returning, 5-23, 5-31
setting to midnight, 5-25
storing, 5-22
subtracting, 5-6, 5-35, 5-37

DAYDM function, 5-40

DAYMD function, 5-40, 5-41

DECODE function, 4-2 to 4-4

decoding functions, 4-1
DECODE, 4-2

DEFCENT parameter and, 5-33

deleting function libraries, 2-19

Dialogue Manager, 2-6
ASIS function, 3-3
date and time functions, 5-5
leading zeros, 5-5

Dialogue Manager commands, 2-6
functions and, 2-6
-IF command, 2-8
-RUN, 2-9
-SET, 2-7

DMOD function, 7-8, 7-9

DMY function, 5-42

DOWK function, 5-43

DOWKL function, 5-43

DTDMY function, 5-44

DTDYM function, 5-44

DTMDY function, 5-44 to 5-45

DTMYD function, 5-44

DTYDM function, 5-44

DTYMD function, 5-44

Dynamic Language Environment Support, 2-20

E
EBCDIC values, 6-9

EDIT function, 3-19, 3-20, 6-6 to 6-7

error messages, 8-2
retrieving, 8-2

EXP function, 7-10

EXPN function, 7-11

external functions, 1-2

F
FEXERR function, 8-2

FIND function, 4-5, 4-6

FINDMEM function, 8-3, 8-4

FMOD function, 7-8 to 7-9

FOCUS commands, 2-5
functions and, 2-5

format conversion functions, 1-12, 6-1
ATODBL, 6-2
EDIT, 6-6
FTOA, 6-8
HEXBYT, 6-9
ITONUM, 6-12
ITOPACK, 6-13
ITOZ, 6-15
PCKOUT, 6-17
UFMT, 6-19

format conversions, 6-1

FORTRAN language, A-4
MTHNAM subroutine, A-16

four-digit years, 5-33

Index

I-4 Information Builders

FTOA function, 6-8, 6-9

function argument types, 2-3

function arguments, 2-3 to 2-5

function libraries, 2-17
adding, 2-19
deleting, 2-19
searching, 2-17 to 2-18

functions, 1-1 to 1-2, 2-1 to 2-2
arguments and, 2-3
assigning results to a variable, 2-7
character, 1-3
commands and, 2-7 to 2-10, 2-13 to 2-14
COMPUTE command, 2-6
data source, 1-6, 4-1
date and time, 1-7, 5-1
decoding, 4-1
Dialogue Manager commands and, 2-6
external, 1-2
FOCUS commands and, 2-5
format conversion, 1-12, 6-1
-IF command, 2-8
IF criteria, 2-11
internal, 1-2
numeric, 1-13, 7-1
system, 1-15, 8-1
types, 1-3

functions as arguments, 2-11

FUSREXX macros, A-34
compiling in VM/CMS, A-34

G
GETPDS function, 8-5 to 8-8

GETTOK function, 3-20 to 3-22

GETUSER function, 8-9 to 8-10

GLOBAL command, A-14

GREGDT function, 5-46 to 5-47

H
HADD function, 5-16 to 5-17

HCNVRT function, 5-17 to 5-18

HDATE function, 5-19

HDAY parameter, 5-4 to 5-5

HDIFF function, 5-20

HDTTM function, 5-21

HEXBYT function, 6-9to 6-11

HGETC function, 5-22

HHMMSS function, 5-23, 8-10

HINPUT function, 5-24

HMIDNT function, 5-25

HNAME function, 5-26 to 5-27

holiday file, 5-4 to 5-5
rules, 5-4

holidays, 5-4
setting, 5-4

HPART function, 5-28

HSETPT function, 5-29

HTIME function, 5-30

I
-IF command, 2-8

functions and, 2-8 to 2-9

IF criteria, 2-11

IMOD function, 7-8 to 7-9

INT function, 7-12

integer format, 5-44

integers, 5-44
converting to dates, 5-44 to 5-45

internal functions, 1-2

invoking functions, 2-2

ITONUM function, 6-12 to 6-13

ITOPACK function, 6-13 to 6-14

ITOZ function, 6-15 to 6-16

 Index

Using Functions I-5

J
JULDAT function, 5-47 to 5-48

L
LAST function, 4-7 to 4-8

LCWORD function, 3-22 to 3-23

leading zeros, 5-5
displaying, 5-6

LEADZERO parameter, 5-5 to 5-6

legacy date functions, 1-7, 1-10, 5-32 to 5-33
AYM, 5-35
AYMD, 5-37
CHGDAT, 5-38
DADMY, 5-40
DADYM, 5-40
DAMDY, 5-40
DAMYD, 5-40
DAYDM, 5-40
DAYMD, 5-40
DEFCENT parameter and, 5-33
DMY, 5-42
DOWK, 5-43
DOWKL, 5-43
DTDMY, 5-44
DTDYM, 5-44
DTMDY, 5-44
DTMYD, 5-44
DTYDM, 5-44
DTYMD, 5-44
GREGDT, 5-46
JULDAT, 5-47
MDY, 5-42
YM, 5-49
YMD, 5-42
YRTHRESH parameter and, 5-33

legacy dates, 5-32

legacy versions, 5-33

LJUST function, 3-24, 3-25

load libraries, 2-15
OS/390, 2-15 to 2-16

LOCASE function, 3-25 to 3-26

LOG function, 7-13

LOOKUP function, 4-9, 4-10, 4-12
extended function, 4-14 to 4-15

M
MAX function, 7-14

MDY function, 5-42

MIN function, 7-14

MTHNAM subroutine, A-15
BAL Assembler language, A-20
C language, A-21
COBOL language, A-17
FOCUS requests, A-22
FORTRAN language, A-16
PL/I language, A-19

MVSDYNAM function, 8-11, 8-12

N
number of arguments, 2-5

numeric format, 7-1
converting, 5-28, 6-8, 6-12 to 6-13, 6-15

numeric functions, 1-13, 7-1
ABS, 7-2
ASIS, 7-3
BAR, 7-3
CHKPCK, 7-6
DMOD, 7-8
EXP, 7-10
EXPN, 7-11
FMOD, 7-8
IMOD, 7-8
INT, 7-12
LOG, 7-13
MAX, 7-14
MIN, 7-14
PRDNOR, 7-15
PRDUNI, 7-15
RDNORM, 7-18
RDUNIF, 7-18
SQRT, 7-20

Index

I-6 Information Builders

numeric values, 6-9, 7-2
calculating, 7-2, 7-8, 7-20
converting to characters, 6-10 to 6-11
finding greatest integer, 7-12
generating random, 7-15, 7-18
maximum, 7-14
minimum, 7-14
raising to a power, 7-10
returning logarithm, 7-13

O
OVRLAY function, 3-27, 3-28

P
packed fields, 7-6

validating, 7-6

packed numbers, 6-17
extract files and, 6-17

PARAG function, 3-29, 3-30

partitioned data sets, 8-3
members, 8-3, 8-5

PCKOUT function, 6-17 to 6-18

PL/I language, A-4
MTHNAM subroutine, A-19

POSIT function, 3-31, 3-32

PRDNOR function, 7-15 to 7-17

PRDUNI function, 7-15 to 7-16

R
RDNORM function, 7-18 to 7-19

RDUNIF function, 7-18 to 7-19

RECAP command, 2-13
functions and, 2-13 to 2-14

REXX subroutines, A-23

RJUST function, 3-32 to 3-33

-RUN command, 2-9
ATODBL function, 6-2
functions and, 2-9 to 2-10

S
scientific notation, 7-11

-SET command, 2-7

SET parameters, 5-3
BUSDAYS, 5-3
DATEFNS, 5-33
HDAY, 5-4, 5-5
LEADZERO, 5-5

SOUNDEX function, 3-33 to 3-34

SQRT function, 7-20

SQUEEZ function, 3-35

storing subroutines, A-13
OS/390, A-14
VM/CMS, A-13

strings, 3-19
alphanumeric, 3-19

STRIP function, 3-36 to 3-37

subroutines, A-1, A-2
compiling, A-13
creating, A-1, A-2
custom, A-15
MTHNAM, A-15
REXX, A-23
storing, A-13
testing, A-14
writing, A-3

SUBSTR function, 3-37 to 3-38

substrings, 3-31
extracting, 3-31 to 3-32, 3-38

 Index

Using Functions I-7

system functions, 1-15, 8-1
FEXERR, 8-2
FINDMEM, 8-3
GETPDS, 8-5
GETUSER, 8-9
HHMMSS, 8-10
MVSDYNAM, 8-11
TODAY, 8-13

T
TODAY function, 5-31 to 5-32, 8-13

TRIM function, 3-39 to 3-40

TSO allocation, 2-15

two-digit years, 5-33, 5-34

U
UFMT function, 6-19 to 6-20

UPCASE function, 3-40 to 3-42

user IDs, 8-9
retrieving, 8-9

V
variables, 2-7

functions and, 2-7

VM/CMS environment, 2-16
FUSREXX macros, A-34

W
WHEN criteria, 2-12

functions and, 2-12

WHERE criteria, 2-11
functions and, 2-11

work days, 5-3
specifying, 5-3, 5-4

writing subroutines, A-3
arguments, A-4
language considerations, A-6
naming conventions, A-3
programming, A-5, A-8 to A-11

Y
YM function, 5-49 to 5-50

YMD function, 5-42

YRTHRESH parameter, 5-33

Reader Comments
In an ongoing effort to produce effective documentation, the Documentation Services staff at Information
Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to corrections. Identify
specific pages where applicable. You can contact us through the following methods:

Mail: Documentation Services – Customer Support
Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Fax: (212) 967-0460

E-mail: books_info@ibi.com

Web form: http://www.informationbuilders.com/bookstore/derf.html

Name: __

Company: ___

Address: __

Telephone: ___ Date:______________________________

E-mail: ___

Comments:

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
FOCUS for S/390 Using Functions DN1001140.1101
Version 7.2

Reader Comments

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
FOCUS for S/390 Using Functions DN1001140.1101
Version 7.2

	Preface
	Contents
	1. Introducing Functions
	Using Functions
	Types of Functions
	Character Functions
	Data Source and Decoding Functions
	Date and Time Functions
	Format Conversion Functions
	Numeric Functions
	System Functions

	2. Accessing and Invoking a Function
	Invoking a Function
	Using an Argument in a Function
	Argument Types
	Argument Formats
	Argument Length
	Number and Order of Arguments

	Using a Function in a FOCUS Command
	Using a Calculation or Compound IF Command With a COMPUTE Command

	Using a Function With a Dialogue Manager Command
	Assigning the Result of a Function to a Variable
	Using a Function in a -IF Command
	Using a Function in an Operating System -RUN Command

	Using a Function in Another Function
	Using a Function in WHERE or IF Criteria
	Using a Function in WHEN Criteria
	Using a Function in a RECAP Command
	Accessing a Function
	Storing and Accessing a Function on OS/390
	Storing and Accessing a Function on UNIX
	Storing and Accessing a Function on VM/CMS
	Searching for a Function Library
	Adding and Deleting a Subroutine Library

	Dynamic Language Environment Support

	3. Character Functions
	ARGLEN: Measuring the Length of a String
	ASIS: Distinguishing Between a Space and a Zero
	BITSON: Determining If a Bit is On or Off
	BITVAL: Evaluating a Bit String a Binary Integer
	BYTVAL: Translating a Character to a Decimal Value
	CHKFMT: Checking the Format of a String
	CTRAN: Translating One Character to Another
	CTRFLD: Centering a Character String
	EDIT: Extracting or Adding Characters
	GETTOK: Extracting a Substring (Token)
	LCWORD: Converting a String to Mixed Case
	LJUST: Left-Justifying a String
	LOCASE: Converting Text to Lowercase
	OVRLAY: Overlaying a Substring Within a String
	PARAG: Dividing Text Into Smaller Lines
	POSIT: Finding the Beginning of a Substring
	RJUST: Right-Justifying a String
	SOUNDEX: Comparing Strings Phonetically
	SQUEEZ: Reducing Multiple Blanks to a Single Blank
	STRIP: Removing a Character From a String
	SUBSTR: Extracting a Substring
	TRIM: Removing Leading and Trailing Occurrences
	UPCASE: Converting Text to Uppercase

	4. Data Source and Decoding Functions
	DECODE: Decoding Values
	FIND: Verifying the Existence of an Indexed Field
	LAST: Retrieving the Preceding Value
	LOOKUP: Retrieving a Value From a Cross-Referenced File
	Using the Extended LOOKUP Function

	5. Date and Time Functions
	Using Standard Date and Time Functions
	Specifying Work Days
	Enabling Leading Zeros For Date and Time Functions in Dialogue Manager
	DATEADD: Adding or Subtracting a Date Unit to or From a Date
	DATECVT: Converting a Date Format
	DATEDIF: Finding the Difference Between Two Dates
	DATEMOV: Moving a Date to a Significant Point
	HADD: Incrementing a Date-Time Field
	HCNVRT: Converting a Date-Time Field to Alphanumeric Format
	HDATE: Converting the Date Portion of a Date-Time Field to a Date Format
	HDIFF: Finding the Number of Units Between Two Date-Time Values
	HDTTM: Converting a Date field to a Date-Time Field
	HGETC: Storing the Current Date and Time in a Date-Time Field
	HHMMSS: Returning the Current Time
	HINPUT: Converting an Alphanumeric String to a Date-Time Value
	HMIDNT: Setting the Time Portion of a Date-Time Field to Midnight
	HNAME: Extracting a Date-Time Component in Alphanumeric Format
	HPART: Returning a Date-Time Component in Numeric Format
	HSETPT: Inserting a Component Into a Date-Time Field
	HTIME: Converting the Time Portion of a Date-Time Field to a Number
	TODAY: Returning the Current Date

	Using Legacy Date Functions
	Using Legacy Versions of Date Functions
	Using Dates With Two and Four-Digit Years
	AYM: Adding or Subtracting Months to or From Dates
	AYMD: Adding or Subtracting Days to or From Dates
	CHGDAT: Changing Date Formats
	DA Functions: Converting a Date to an Integer
	DMY, MDY, YMD: Calculating the Difference Between Two Dates
	DOWK and DOWKL: Finding the Day of the Week
	DT Functions: Converting an Integer to a Date
	GREGDT: Converting From Julian to Gregorian Format
	JULDAT: Converting a Date From Gregorian to Julian Format
	YM: Calculating Elapsed Months

	6. Format Conversion Functions
	ATODBL: Converting an Alphanumeric String to Double-Precision Format
	EDIT: Converting the Format of a Field
	FTOA: Converting a Number to Alphanumeric Format
	HEXBYT: Converting a Number to a Character
	ITONUM: Converting a Large Binary Integer to Double-Precision Format
	ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format
	ITOZ: Converting a Number to Zoned Format
	PCKOUT: Writing Packed Numbers of Different Lengths
	UFMT: Converting Alphanumeric to Hexadecimal

	7. Numeric Functions
	ABS: Calculating Absolute Value
	ASIS: Distinguishing Between a Blank and a Zero
	BAR: Producing Bar Charts
	CHKPCK: Validating Packed Fields
	DMOD, FMOD, and IMOD: Calculating the Remainder From a Division
	EXP: Raising “e” to the Nth Power
	EXPN: Evaluating a Number in Scientific Notation
	INT: Finding the Greatest Integer
	LOG: Calculating the Natural Logarithm
	MAX and MIN: Finding the Maximum or Minimum Value
	PRDNOR and PRDUNI: Generating Reproducible Random Numbers
	RDNORM and RDUNIF: Generating Random Numbers
	SQRT: Calculating the Square Root

	8. System Functions
	FEXERR: Retrieving an Error Message
	FINDMEM: Finding a Member of a Partitioned Data Set
	GETPDS: Determining if a Member of a Partitioned Data Set Exists
	GETUSER: Retrieving a User ID
	HHMMSS: Returning the Current Time
	MVSDYNAM: Passing a DYNAM Command to the Command Processor
	TODAY: Returning the Current Date

	Appendix A: Creating Your Own Subroutines
	Process Overview
	Considerations for Writing Subroutines
	Naming Conventions
	Argument Considerations
	Programming Considerations
	Language Considerations
	Programming Technique: Entry Points
	Programming Technique: Subroutines With More Than 28 Arguments

	Compilation and Storage
	VM/CMS: Compilation and Storage
	OS/390: Compilation and Storage

	Testing the Subroutine
	Example of a Custom Subroutine: The MTHNAM Subroutine
	The MTHNAM Subroutine Written in FORTRAN
	The MTHNAM Subroutine Written in COBOL
	The MTHNAM Subroutine Written in PL/I
	The MTHNAM Subroutine Written in BAL Assembler
	The MTHNAM Subroutine Written in C
	The MTHNAM Subroutine Called by a FOCUS Request

	Subroutines Written in REXX
	Using REXX Subroutines
	Compiling FUSREXX Macros in VM/CMS

	Index

